, Volume 9, Issue 4, pp 345–362 | Cite as

Quasi-random graphs

  • F. R. K. Chung
  • R. L. Graham
  • R. M. Wilson


We introduce a large equivalence class of graph properties, all of which are shared by so-called random graphs. Unlike random graphs, however, it is often relatively easy to verify that a particular family of graphs possesses some property in this class.

AMS subject classification (1980)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Alon andF. R. K. Chung, Explicit constructions of linear-sized tolerant networksDiscrete Math.,72 (1988), 15–20.Google Scholar
  2. [2]
    B. Bollobás,Random Graphs, Academic Press, New York, 1985.Google Scholar
  3. [3]
    B. Bollobás andA. Thomason, Graphs which contain all small graphs,European J. Comb. 2 (1981), 13–15.Google Scholar
  4. [4]
    D. A. Burgess, On character sums and primitive roots,Proc. London Math. Soc. 12 (1962), 179–192.Google Scholar
  5. [5]
    P.Erdős and A.Hajnal, On spanned subgraphs of graphs,Beitrage zur Graphentheorie und deren Anwendungen, Kolloq. Oberhof (DDR), (1977), 80–96.Google Scholar
  6. [6]
    P. Erdős andJ. Spencer,Probabilistic Methods in Combinatorics, Akadémiai Kiadó, Budapest, 1974.Google Scholar
  7. [7]
    P. Frankl andR. L. Graham, Intersection theorems for vector spaces,European J. Comb. 6 (1985), 183–187.Google Scholar
  8. [8]
    P.Frankl, V.Rödl and R. M.Wilson, The number of submatrices of given type in a Hadamard matrix and related results (to appear).Google Scholar
  9. [9]
    P. Frankl andR. M. Wilson, Intersection theorems with geometric consequences,Combinatorica 1 (1981), 357–368.Google Scholar
  10. [10]
    Z. Füredi andJ. Komlós, The eigenvalues of random symmetric matrices,Combinatorica 1 (1981), 233–241.Google Scholar
  11. [11]
    F. R. Gantmacher,Matrix Theory, Vol. 1, Chelsea, New York, 1977.Google Scholar
  12. [12]
    R. L. Graham andJ. H. Spencer, A constructive solution to a tournament problem,Canad. Math. Bull. 14 (1971), 45–48.Google Scholar
  13. [13]
    F.Juhász, On the spectrum of a random graph,Colloq. Math. Soc. János Bolyai 25,Algebraic Methods in Graph Theory, Szeged (1978), 313–316.Google Scholar
  14. [14]
    H. L. Montgomery, Topics in Multiplicative Number Theory,Lecture Notes in Math. 227, Springer-Verlag, New York, 1971.Google Scholar
  15. [15]
    E. M. Palmer,Graphical Evolution, Wiley, New York, 1985.Google Scholar
  16. [16]
    V. Rödl, On the universality of graphs with uniformly distributed edges,Discrete Math. 59 (1986), 125–134.Google Scholar
  17. [17]
    A. Thomason, Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys in Combinatorics 1987 (C. Whitehead, ed.)LMS Lecture Notes Series 123, Cambridge Univ. Press, Cambridge, (1987), 173–196.Google Scholar
  18. [17]
    A.Thomason, Random graphs, strongly regular graphs and pseudo-random graphs, in SurveysGoogle Scholar
  19. [18]
    A.Thomason, Pseudo-random graphs, in Proceedings of Random Graphs, Poznań 1985 (M. Karonski, ed.)Annals of Discrete Math. 33 (1987), 307–331.Google Scholar
  20. [19]
    A.Weil, Sur les courbes algébrique et les variétés qui s'en déduisent,Actualités Sci. Ind. No. 1041 (1948).Google Scholar
  21. [20]
    R. M. Wilson, Cyclotomy and difference families in abelian groups,J. Number Th. 4 (1972), 17–47.Google Scholar
  22. [21]
    R. M.Wilson, Constructions and uses of pairwise balanced designs, in Combinatorics (M. Hall, Jr. and J. H. van Lint, eds.),Math. Centre Tracts 55, Amsterdam (1974), 18–41.Google Scholar
  23. [22]
    F. R. K.Chung and R. L.Graham, Quasi-random hypergraphs,to appear.Google Scholar
  24. [23]
    S. W.Graham and C.Ringrose,to appear.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • F. R. K. Chung
    • 1
  • R. L. Graham
    • 2
  • R. M. Wilson
    • 3
  1. 1.Bell Communications ResearchMorristownUSA
  2. 2.AT & Bell LaboratoriesMurray HillUSA
  3. 3.California Institute of TechnologyPasadenaUSA

Personalised recommendations