Advertisement

Communications in Mathematical Physics

, Volume 126, Issue 2, pp 325–346 | Cite as

The Weil-Petersson geometry of the moduli space ofSU(n≧3) (Calabi-Yau) manifolds I

  • Andrey N. Todorov
Article

Abstract

The Weil-Petersson metric is defined on the moduli space of Calabi-Yau manifolds. The curvature of this Weil-Petersson metrics is computed and its potential is explicitely defined. It is proved that the moduli space of Calabi-Yau manifolds is unobstructed (see Tian).

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Curvature properties of Teichmuller space. J. Analyse Math.9, 161–176 (1961)Google Scholar
  2. 2.
    Beauville, A.: Varietés Kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom.18, 755–782 (1983)Google Scholar
  3. 3.
    Beauville, A.: Le groups de monodromie des familles universelles d'hypersuifaces et d'intersections completes. Lecture Notes in Mathematical vol1194, pp. 8–18. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  4. 4.
    Besse, A.: Einstein manifolds. A series of Modern Surveys in Mathematics, vol10. Heidelberg, New York: Springer 1986Google Scholar
  5. 5.
    Chern, S.S.: Complex manifolds. Chicago, IL: Chicago University Press 1956Google Scholar
  6. 6.
    Griffiths, Ph., Harris, J.: Principles of algebraic geometry. New York: John Wiley 1978Google Scholar
  7. 7.
    Koiso, M.: Einstein metrics and complex structures. Inv. Math.73, 71–106 (1983)CrossRefGoogle Scholar
  8. 8.
    Kodaira, K., Morrow, J.: Complex manifolds. New York: Holt, Reinhard, and Winston 1971Google Scholar
  9. 9.
    Nannicini, A.: Weil-Petersson metric on the moduli space of Compact Polarized Kalar-Einstein Manifolds of Zero first Chern Class. Manuscripta Math. vol.54, 349–359 (1986)CrossRefGoogle Scholar
  10. 10.
    Royden, H.: Intrinsic metrics on Teichmüller spaces. Proceedings International Congress Math.2, 217–221 (1974)Google Scholar
  11. 11.
    Schumacher, G.: On the geometry of moduli spaces. Manuscripta Mathematica, vol.50, 229–269 (1985)CrossRefGoogle Scholar
  12. 12.
    Siu, J.T.: Curvature of the Weil-Petersson metric on the moduli space of Compact Kähler-Einstein manifolds of Negative Chern Class. Aspects of Math., vol.9, pp. 261–298. Fiedr. Vieweg & Sohn. Braunschweig/Wiesbaden: Friedr. Vieweg 1986Google Scholar
  13. 13.
    Tian, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. Math. Aspects of String Theory. Yau, S.-T. (ed.). Singapore: World Scientific 1988Google Scholar
  14. 14.
    Tromba, A.J.: On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric. Manuscripta Math.56, 475–497 (1986)CrossRefGoogle Scholar
  15. 15.
    Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation I. Commun. Pure Appl. Math.31, 339–411 (1978)Google Scholar
  16. 16.
    Wolf, M.: Thesis, Stanford UniversityGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Andrey N. Todorov
    • 1
  1. 1.Mathematics DepartmentUniversity of CaliforniaSanta CruzUSA

Personalised recommendations