Advances in Computational Mathematics

, Volume 5, Issue 1, pp 443–482 | Cite as

An acceleration property of theE-algorithm for alternate sequences

  • P. Mortreux
  • M. Prévost
Article

Abstract

We prove a convergence acceleration result by theE-algorithm for sequences whose error has an asymptotic expansion on the scale of comparison for which a determinantal relation holds. This result is generalized to the vector case. Moreover we prove a result which contains an acceleration property for columns and diagonals of theE array. This result is applied to some alternating series.

Keywords

Extrapolation E-algorithm convergence acceleration 

AMS subject classification

65B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Abramowitz and I. Stegun,Handbook of Mathematical Functions, Dover, N.Y. (1964).Google Scholar
  2. [2]
    J.M. Borwein, P.B. Borwein and K. Dilcher,Pi, Euler, and Asymptotic Expansions, Amer. Math. Monthly (1989) 681–687.Google Scholar
  3. [3]
    C. Brezinski,A general extrapolation algorithm, Numer. Math. 35 (1980) 175–187.CrossRefGoogle Scholar
  4. [4]
    C. Brezinski,The asymptotic behaviour of sequences and new series transformation based on the Cauchy product, Rocky Mt J. Math. 21 (1991) 71–84.Google Scholar
  5. [5]
    T.J. Bromwich,An introduction to the theory of infinite series (Macmillan, London, 1949).Google Scholar
  6. [6]
    S. Karlin,Total positivity, vol. 1 (Stanford University Press, Stanford, 1962).Google Scholar
  7. [7]
    A. Matos and M. Prévost,Acceleration property for the columns of the E-algorithm, Numerical Algorithms 2 (1992) 393–408.Google Scholar
  8. [8]
    N. Nörlund,Vorlesungen uber Differenzenrechnung (Springer-Verlag, Berlin, 1924).Google Scholar
  9. [9]
    M. Prévost,Acceleration property for the E-algorithm and an application to the summation of the series, Adv. Comput. Math 2 (1994) 319–341.Google Scholar
  10. [10]
    D.V. Widder, The Laplace transform (Princeton University Press, Princeton, 1946).Google Scholar
  11. [11]
    P. Wynn,On the convergence and stability of the ε-algorithm, SIAM J. Numer. Anal. 3 (1966) 1065–1068.CrossRefGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • P. Mortreux
    • 1
  • M. Prévost
    • 2
  1. 1.Laboratoire d'Analyse Numérique et d'OptimisationUniversité des sciences et technologies de LilleVilleneuve d'Ascq-CédexFrance
  2. 2.Université du Littoral, Laboratoire de Mathématiques Appliquées, Bât, PoincaréCentre Universitaire de la Mi-VoixCalais CédexFrance

Personalised recommendations