Advertisement

Advances in Computational Mathematics

, Volume 5, Issue 1, pp 173–187 | Cite as

Some remarks on greedy algorithms

  • R. A. DeVore
  • V. N. Temlyakov
Article

Abstract

Estimates are given for the rate of approximation of a function by means of greedy algorithms. The estimates apply to approximation from an arbitrary dictionary of functions. Three greedy algorithms are discussed: the Pure Greedy Algorithm, an Orthogonal Greedy Algorithm, and a Relaxed Greedy Algorithm.

Keywords

Greedy Algorithm Pure Greedy Algorithm Orthogonal Greedy Algorithm Relaxed Greedy Algorithm Arbitrary Dictionary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Barron, Universal approximation bounds for superposition of a sigmoidal function, IEEE Transactions on Information Theory 39 (1993) 930–945.CrossRefGoogle Scholar
  2. [2]
    C. Darken, M. Donahue, L. Gurvits and E. Sontag, Rate of approximation results motivated by robust neural network learning,6th ACM Conference on Computer Learning Theory, ACM, 1993, pp. 303–309.Google Scholar
  3. [3]
    R. DeVore, B. Jawerth and V. Popov, Compression of wavelet decompositions, American Journal of Mathematics 114 (1992) 737–785.Google Scholar
  4. [4]
    L. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Annals of Statistics 20 (1992) 608–613.Google Scholar
  5. [5]
    G. Davis, S. Mallat and M. Avellaneda, Adaptive nonlinear approximations, Constructure Approximation, to appear.Google Scholar
  6. [6]
    E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I, Math. Annalen 63 (1906–1907) 433–476.CrossRefGoogle Scholar
  7. [7]
    S.B. Stechkin, On absolute convergence of orthogonal series, Dok. Akad. Nauk SSSR 102 (1955) 37–40.Google Scholar
  8. [8]
    G. Pisier, Remarques sur un resultat non publié de B. Maurey,Seminaire d'Analyse Fonctionelle, 1980–81, Ecole Polytechnique Centre de Mathematiques, Palaiseau.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • R. A. DeVore
    • 1
  • V. N. Temlyakov
    • 1
  1. 1.Department of MathematicsUniversity of South CarolinaColumbiaUSA

Personalised recommendations