, Volume 10, Issue 2, pp 175–183 | Cite as

On the number of halving planes

  • I. Bárány
  • Z. Füredi
  • L. Lovász


LetS ⊂ℝ3 be ann-set in general position. A plane containing three of the points is called a halving plane if it dissectsS into two parts of equal cardinality. It is proved that the number of halving planes is at mostO(n2.998).

As a main tool, for every setY ofn points in the plane a setN of sizeO(n4) is constructed such that the points ofN are distributed almost evenly in the triangles determined byY.

AMS subject classification (1980)

52 A 37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Bárány: A generalization of Caratheodory's theorem,Discrete Math.,40 (1982), 141–152.CrossRefGoogle Scholar
  2. [2]
    I. Bárány, andZ. Füredi: Empty simplices in Euclidean space,Canad. Math. Bull.,30 (1987), 436–445.Google Scholar
  3. [3]
    E. Boros, andZ. Füredi: The number of triangles covering the center of ann-set,Geometriae Dedicata,17 (1984), 69–77.CrossRefGoogle Scholar
  4. [4]
    H. Edelsbrunner:Algorithms in combinatorial geometry, Springer, Berlin Heidelberg, (1987).Google Scholar
  5. [5]
    P. Erdős: On extremal problems of graphs and generalized graphs,Israel J. Math.,2 (1964), 183–190.Google Scholar
  6. [6]
    P. Erdős, L. Lovśsz, A. Simmons, andE.G. Straus: Dissection graphs of planar point sets, inA Survey of Combinatorial Theory (J. N. Shrivastava et al., eds.), North-Holland, Amsterdam, (1973), 139–149.Google Scholar
  7. [7]
    P. Erdős, andM. Simonovits: Supersaturated graphs and hypergraphs,Combinatorica,3 (1983), 181–192.Google Scholar
  8. [8]
    P. Frankl, andV. Rödl: Hypergraphs do not jump,Combinatorica,4 (1984), 149–159.Google Scholar
  9. [9]
    L. Lovász: On the number of halving lines,Annales Univ. R. Eötvös,14 (1971), 107–108.Google Scholar
  10. [10]
    M. Katchalski, andA. Meir: On empty triangles determined by points in the plane,Acta Math. Hungar.,51 (1988), 323–328.CrossRefGoogle Scholar
  11. [11]
    J. Reay: An extension of Radon's theorem,Illinois J. Math.,12 (1968), 184–189.Google Scholar
  12. [12]
    H. Tverberg: A generalization of Radon's theorem,J. London Math. Soc.,41 (1966), 123–128.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • I. Bárány
    • 1
  • Z. Füredi
    • 1
  • L. Lovász
    • 2
    • 3
  1. 1.Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of Computer ScienceEötvös Loránd UniversityBudapestHungary
  3. 3.Princeton UniversityPrincetonUSA

Personalised recommendations