, Volume 10, Issue 3, pp 261–269 | Cite as

Variations on the theme of repeated distances

  • P. Erdős
  • J. Pach


We give an asymptotically sharp estimate for the error term of the maximum number of unit distances determined byn points in ℝd, d≥4. We also give asymptotically tight upper bounds on the total number of occurrences of the “favourite” distances fromn points in ℝd, d≥4. Related results are proved for distances determined byn disjoint compact convex sets in ℝ2.

AMS subject classification (1980)

52 A 37 52 A 40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Avis, P. Erdős, andJ. Pach: Repeated distances in space,Graphs and Combinatorics,4 (1988), 207–217.Google Scholar
  2. [2]
    B. Bollobás:Extremal Graph Theory, Academic Press, London,1978.Google Scholar
  3. [3]
    B. Bollobás, P. Erdős, S. Simonovits, andE. Szemerédi: Extremal graphs without large forbidden subgraphs, in:Advances in Graph Theory, Ann. Discr. Math.,3 (1978), 29–41.Google Scholar
  4. [4]
    W. G.Brown, and F.Harary: Extremal digraphs, in:Combinatorial Theory and its Applications (Erdős et al, eds.),Coll. Math. Soc. J. Bolyai,4, North-Holland, 1970, 135–198.Google Scholar
  5. [5]
    W. G. Brown, andM. Simonovits: Digraph extremal problems, hypergraph extremal problems, and the densities of graph structures,Discr. Math.,48 (1984), 147–162.Google Scholar
  6. [6]
    K. L.Clarkson, H.Edelsbrunner, L. J.Guibas, M.Sharir, and E.Welzl: Combinatorial complexity bounds for arrangements of curves and surfaces, to appear inDiscr. Comput. Geom. Google Scholar
  7. [7]
    H. Edelsbrunner:Algorithms in Combinatorial Geometry: Springer-Verlag, Heidelberg,1987.Google Scholar
  8. [8]
    P. Erdős: On sets of distances ofn points,Amer. Math. Monthly,53 (1946), 248–250.Google Scholar
  9. [9]
    P. Erdős: On sets of distances ofn points in Euclidean space,Publ. Math. Inst. Hung. Acad. Sci.,5 (1960), 165–169.Google Scholar
  10. [10]
    P. Erdős: On some applications of graph theory to geometry,Canadian J. Math.,19 (1967), 968–971.Google Scholar
  11. [11]
    P. Erdős, D. Hickerson, andJ. Pach: A problem of Leo Moser about repeated distances on the sphere,Amer. Math. Monthly. 96 (1989), 569–575.Google Scholar
  12. [12]
    P. Erdős, andA. H. Stone: On the structure of linear graphs,Bull. Amer. Math. Soc.,52 (1946), 1087–1091.Google Scholar
  13. [13]
    K. Kedem, R. Livne, J. Pach, andM. Sharir: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles,Discr. Comput. Geom.,1 (1986), 59–71.Google Scholar
  14. [14]
    T. Kővári, V. T. Sós, andP. Turán: On a problem of Zarankiewicz,Colloquium Math.,3 (1954), 50–57.Google Scholar
  15. [15]
    W. O. J. Moser, andJ. Pach:100 Research Problems in Discrete Geomentry, McGill University, Montreal,1987.Google Scholar
  16. [16]
    J. Spencer, E. Szemerédi, andW. T. Trotter, Jr.: Unit distances in Euclidean plane, in:Graph Theory and Combinatorics, Academic Press, London,1984, 293–303.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • P. Erdős
    • 1
  • J. Pach
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations