, Volume 10, Issue 1, pp 41–51 | Cite as

How to draw a planar graph on a grid

  • H. De Fraysseix
  • J. Pach
  • R. Pollack


Answering a question of Rosenstiehl and Tarjan, we show that every plane graph withn vertices has a Fáry embedding (i.e., straight-line embedding) on the 2n−4 byn−2 grid and provide anO(n) space,O(n logn) time algorithm to effect this embedding. The grid size is asymptotically optimal and it had been previously unknown whether one can always find a polynomial sized grid to support such an embedding. On the other hand we show that any setF, which can support a Fáry embedding of every planar graph of sizen, has cardinality at leastn+(1−o(1))√n which settles a problem of Mohar.

AMS subject classification (1980)

05C10 05C35 68E10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.Chazelle, Slimming down search structures: a functional approach to algorithm design, inProceedings of the Twenty Sixth Annual Symposium on the Foundations of Computer Science,1985, 165–174.Google Scholar
  2. [2]
    N.Chiba, T.Yamanouchi and T.Nishizeki, Linear algorithms for convex drawings of planar graphs, inProgress in graph theory,1982, 153–173.Google Scholar
  3. [3]
    P. Duchet, Y. Hamidoune, M. Las Vergnas andH. Meyniel, Representing a planar graph by vertical lines joining different intervals,Discrete Math.,46 (1983), 319–321.Google Scholar
  4. [4]
    I. Fáry, On straight line representing of planar graphs,Acta. Sci. Math. (Szeged),11 (1948), 229–233.Google Scholar
  5. [5] Fraysseix,Drawing planar and non-planar graphs from the half-edge code (to appear).Google Scholar
  6. [6] Fraysseix and P.Rosenstiehl, Structures combinatoires pour traces automatiques do resaux, inProceedings of the Third European Conference on CAD/CAM and Computer Graphics,1984, 332–337.Google Scholar
  7. [7] Fraysseix and P.Rosenstiehl,L'algorithme Gauche-droite pour le plongement des graphes dans le plan (to appear).Google Scholar
  8. [8]
    D. H.Greene,Efficient coding and drawing of planar graphs, Xerox Palo Alto Research Center. Palo Alto, CA.Google Scholar
  9. [9]
    P.Gritzmann and B.Mohar,private communication.Google Scholar
  10. [10]
    G.Grünbaum,Convex Polytopes, John Wiley.Google Scholar
  11. [11]
    J. Hopcroft andR. Tarjan, Efficient planarity testing,J. Comput. Mach.,21 (1974), 549–568.Google Scholar
  12. [12]
    F. T.Leighton,Complexity Issues in VLSI, The MIT Press.Google Scholar
  13. [13]
    B.Mohar,private communication.Google Scholar
  14. [14]
    R. H. J. M.Otten and J. G.van Wijk, Graph representation in interactive layout design, inProceedings of the IEEE International Symposium on Circuits and Systems,1978, 914–918.Google Scholar
  15. [15]
    P.Rosenstiehl, Embedding in the plane with orientation constraints,Ann. N. Y. Acad. Sci. (to appear).Google Scholar
  16. [16]
    R. C.Read, A new method for drawing a planar graph given the cyclic order of the edges at each vertex,Congressus Numerantium,56 31–44.Google Scholar
  17. [17]
    P. Rosenstiehl andR. E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs,Disc. Comp. Geom.,1 (1986), 343–353.Google Scholar
  18. [18]
    W. W.Schnyder,Planar Graphs and Poset Dimension (to appear).Google Scholar
  19. [19]
    R. Tommasia andI. G. Tollis, A unified approach to visibility representations of planar graphs,Disc. Comp. Geom.,1 (1986), 321–341.Google Scholar
  20. [20]
    W. T. Tutte, How to draw a graph,Proc. London Math. Soc,13 (1963), 743–768.Google Scholar
  21. [21]
    J. D.Ullman, Computational Aspects of VLSI,Computer Science Press.Google Scholar
  22. [22]
    L. G.Valiant, Universality considerations in VLSI circuits,IEEE Trans. on Computers,C-30, 135–140.Google Scholar
  23. [23]
    D. R. Woods,Drawing planar graphs, in Report N. STAN-CS-82-943, Computer Science Department, Stanford University, CA,1981.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • H. De Fraysseix
    • 1
  • J. Pach
    • 2
    • 3
  • R. Pollack
    • 3
  1. 1.CNRSParisFrance
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesHungary
  3. 3.Courant InstituteNYUNew YorkUSA

Personalised recommendations