Advertisement

Combinatorica

, Volume 9, Issue 1, pp 9–19 | Cite as

On 3-pushdown graphs with large separators

  • Z. Galil
  • R. Kannan
  • E. Szemerédi
Article

Abstract

For an integers letl s (n), thes-iterated logarithm function, be defined inductively:l0(n)=n,ls+1(n)=log2 (l2(n)) fors≧0. We show that for every fixeds and alln large enough, there is ann-vertex 3-pushdown graph whose smallest separator contains at leastΩ(n/l s (n)) vertices.

AMS subject classification (1980)

05C35 68C25 68C40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. S.Baker (1983), Approximation algorithms for NP-complete problems, inProc. 24th IEEE Annual Symp. on the Foundations of Computer Science, 265–273.Google Scholar
  2. [2]
    B. Bollobás (1978),Extremal Graph Theory, Prentice Hall, London, New York, pp. xx.Google Scholar
  3. [3]
    B. Bollobás (1985),Random Graphs, Prentice Hall, London, New York, pp. 11.Google Scholar
  4. [4]
    J.Buss and O.Shor (1984), On the pagenumber of planar graphs, inProc. 16th ACM Symp. on the Theory of Computing, 98–101.Google Scholar
  5. [5]
    F.Chung, F. T.Leighton and A.Rosenberg (1984),Embedding graphs in books: A layout problem with applications to VLSI design, manuscript.Google Scholar
  6. [6]
    Z.Galil, R.Kannan and E.Szemerédi, On nontrivial separators fork-page graphs and simulations by nondeterministic one-tape Turing machines, to appear inJCSS.Google Scholar
  7. [7]
    L.Heath (1984), Embedding planar graphs in seven pages, inProc. 25th IEEE Symp. on the Foundations of Computer Science, 74–83.Google Scholar
  8. [8]
    J. Hopcroft, W. Paul andL. Valiant (1977), On time versus space,J. Assoc. Comput. Math. 24, 332–337.Google Scholar
  9. [9]
    R. Kannan (1985), Unravelingk page graphs,Info. & Control 66, 1–5.Google Scholar
  10. [10]
    R. J. Lipton andR. E. Tarjan (1980), Applications of a planar graph separator theorem,SIAM J. Comput. 9, No. 3, 615–627.CrossRefGoogle Scholar
  11. [11]
    W. Maass (1985), Combinatorial lower bound arguments for deterministic and non-deterministic Turning machines,Trans. Amer. Math. Soc. 292, No.2, 675–693.Google Scholar
  12. [12]
    W. I.Paul, N.Pippenger, E.Szemerédi and W. T.Trotter (1983), On determinism versus non-determinism, inProc. 24th Symp. on the Foundations of Computer Science, 429–238.Google Scholar
  13. [13]
    A. L. Rosenberg (1983), The Diogenes approach to testable fault-tolerant arrays of processors,IEEE Trans. Comput. C-32, pp. 902–910.Google Scholar
  14. [14]
    M. M. Syslo (1979), Characterisations of outerplanar graphs,Discrete Math. 26, 47–53.CrossRefGoogle Scholar
  15. [15]
    L. G. Valiant, (1976), Graph-theoretic properties in computational complexity,J. Comput. System Sci. 13, 278–285.Google Scholar
  16. [16]
    M.Yannakakis (1986), Four pages are necessary and sufficient, inProc. 18th ACM Symp. on the Theory of Computing, 104–108.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • Z. Galil
    • 1
    • 2
  • R. Kannan
    • 3
    • 4
  • E. Szemerédi
    • 5
  1. 1.Columbia UniversityUSA
  2. 2.Tel-Aviv UniversityIsrael
  3. 3.University of ChicagoUSA
  4. 4.Hungarian Academy of SciencesHungary
  5. 5.Carnegie Mellon UniversityUSA

Personalised recommendations