Advertisement

Studia Logica

, Volume 36, Issue 4, pp 407–426 | Cite as

A survey of Leśniewski's logic

  • V. Frederick Rickey
Article

Keywords

Mathematical Logic Computational Linguistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The following abbreviations are used

JSL

Journal of Symbolic Logic

NDJFL

Notre Dame Journal of Formal Logic

PF

Przegląd Filozoficzny

Rocznik

Polskie Towarzystwo Naukowe na Obczyźnie. Rocznik

SL

Studia Logica

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. AJDUKIEWICZ, KAZIMIERZ [1935]Die Syntaktische Konnexität,Studia Philosophica, 1, 1–27.Google Scholar
  2. CANTY, JOHN THOMAS [1969a]The Numerical Epsilon,NDJFL, 10, 47–63.Google Scholar
  3. — [1969b]Leśniewski's Terminological Explanations as Recursive Concepts,NDJFL, 10, 337–369.Google Scholar
  4. CHANG, C. C. and KEISLER, H. J. [1973]Model Theory, North-Holland Publ. Co.Google Scholar
  5. CHURCH, ALONZO [1956]Introduction to Mathematical Logic, Princeton University Press.Google Scholar
  6. CLAY, ROBERT E. [1966]On the Definition of Mereological Class,NDJFL, 7, 359–360.Google Scholar
  7. — [1968]The Consistency of Leśniewski's Mereology Relative to the Real Number System,JSL, 33, 251–257.Google Scholar
  8. — [1971]A Model for Leśniewski's Mereology in Functions,NDJFL, 12, 467–478.Google Scholar
  9. — [1974a]Relation of Leśniewski's Mereology to Boolean Algebra,JSL, 39, 638–648.Google Scholar
  10. — [1974b]Some Mereological Models,NDJFL, 15, 141–146.Google Scholar
  11. — [1975b]Single Axioms for Atomistic and Atomless Mereology,NDJFL, 16, 345–351.Google Scholar
  12. DAVIS, CHARLES C., JR. [1975]An Investigation Concerning the Hilbert-Sierpiński Logical Form of the Axiom of Choice,NDJFL, 16, 145–184.Google Scholar
  13. GLIBOWSKI, EDMUND [1969]The Application of Mereology to Grounding of Elementary Geometry,SL, 24, 109–129.Google Scholar
  14. GOODMAN, N. [1951]The Structure of Appearance. Cambridge, Mass.Google Scholar
  15. GRZEGORCZYK, ANDRZEJ [1955]The Systems of Leśniewski in Relation to Contemporary Logical Research,SL, 3, 77–95.Google Scholar
  16. HENRY, DESMOND PAUL [1972]Medieval Logic and Metaphysics: A Modern Introduction, Hutchinson University Library.Google Scholar
  17. IWANUŚ, BOGUSŁAW [1973a]On Leśniewski's Elementary Ontology,SL, 31, 73–125.Google Scholar
  18. JAŚKOWSKI, STANISŁAW [1948a]Une modification des définitions fondamentales de la géometrie des corps de A. Tarski,Annales de la Soc. Pol. de Math., 21, 298–301.Google Scholar
  19. KOTARBIŃSKI, TADEUSZ [1929]Elementy teorji poznania, logiki formalnej i metodologji nauk (Elements of Epistomology, Formal Logic, and Methodology). Lwów.Google Scholar
  20. KOWALSKI, JAMES G. [1977]Leśniewski's Ontology Extended with the Axiom of Choice,NDJFL, 18, 1–78.Google Scholar
  21. KRUSZEWSKI, Z. [1925]Ontologja bez aksjomatów,PF, 28, 136.Google Scholar
  22. KUBIŃSKI, TADEUSZ [1971c]A Report on Investigations Concerning Mereology,Acta Universitatis Wratislaviensis, No. 139, Prace Filozoficzne VIII, 47–68.Google Scholar
  23. KÜNG, GUIDO [1967]Ontology and the Logistic Analysis of Language, The Humanities Press.Google Scholar
  24. LEJEWSKI, CZESŁAW [1954a]A Contribution to Leśniewski's Mereology,Rocznik, 5, 43–50.Google Scholar
  25. — [1955]A New Axiom for Mereology,Rocznik, 6, 65–70.Google Scholar
  26. — [1958b]On Leśniewski's Ontology,Ratio (Oxford), 1, 150–176.Google Scholar
  27. — [1962]A Note on a Problem Concerning the Axiomatic Foundations of Mereology,NDJFL, 4, 135–139.Google Scholar
  28. — [1967c]A Single Axiom for the Mereological Notion of Proper Part,NDJFL, 7, 279–285.Google Scholar
  29. — [1969]Consistency of Leśniewski's Mereology,JSL, 34, 321–328.Google Scholar
  30. — [1973a]A Contribution to the Study of Extended Mereologies,NDJFL, 14, 53–61.Google Scholar
  31. LEONARD, HENRY S., and GOODMAN, NELSON [1940]The calculus of individuals and its uses,JSL, 5, 45–55.Google Scholar
  32. LEŚNIEWSKI, STANISŁAW [1916]Podstawy ogólnej teorii mnogości. I. (Foundations of a general theory of manifolds), Moscow.Google Scholar
  33. — [1927]O podstawach matematyki (On the foundations of mathematics),PF, 30 (1927), 164–206; 31 (1928), 261–291; 32 (1929), 60–101; 33 (1930). 77–105 and 34 (1931), 142–170.Google Scholar
  34. — [1929a]Über Funktionen, deren Felder Gruppen mit Rücksicht auf diese Funktionen sind,Fundamenta Mathematicae, 13, 319–332.Google Scholar
  35. — [1929b]Über Funktionen, deren Felder Abelsche Gruppen in bezug auf diese Funktionen sind,Fundamenta Mathematicae, 14, 242–251.Google Scholar
  36. — [1929c]Grundzüge eines neuen Systems der Grundlagen der Mathematik,Fundamenta Mathematicae, 14, 1–81.Google Scholar
  37. — [1930]Über die Grundlagen der Ontologie,Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 23, 111–132.Google Scholar
  38. — [1931]Über Definitionen in der sogenannten Theorie der Deduktion,Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 24, 289–309.Google Scholar
  39. — [1938a]Einleitende Bemerkungen zur Fortsetzung meiner Mitteilung u. d. T. “Grundzüge eines neuen Systems der Grundlagen der Mathematik”,Collectanea Logica, 1 (Offprint 1938), 1–60.Google Scholar
  40. — [1938b]Grundzüge eines neuen Systems der Grundlagen der Mathematik, § 12,Collectanea Logica, 1 (Offprint 1938), 61–144.Google Scholar
  41. ŁUKASIEWICZ, JAN [1910]Über den Satz von Widerspruch bei Aristotles,Bulletin international de Académie des Sciences de Cracovie, Classe de Philosophie, 15–38.Google Scholar
  42. — [1951]On Variable Functors of Propositional Arguments,Proc, of the Royal Irish Academy, 54, sect. A, 25–35.Google Scholar
  43. — [1953]Symposium: The Principle of Individuation I,Aristotelian Society, Supp. vol. 27, 69–82.Google Scholar
  44. LUSCHEI, EUGENE C. [1962]The Logical Systems of Lesniewski, North-Holland Publ. Co.Google Scholar
  45. MACHOVER, M. [1966]Contextual Determinancy in Leśniewski's Grammar,SL, 19, 47–57.Google Scholar
  46. RICKEY, V. FREDERICK [1972]Axiomatic Inscriptional Syntax, Part I: General Syntax,NDJFL, 13, 1–33.Google Scholar
  47. — [1973]Axiomatic Inscriptional Syntax, Part II: The Syntax of Protothetic,NDJFL, 14, 1–52.Google Scholar
  48. — [1975]Creative Definitions in Propositional Calculi,NDJFL, 16, 273–294.Google Scholar
  49. SCHARLE, THOMAS W. [1971]Completeness of Many-Valued Protothetic,JSL, 36, 363–364.Google Scholar
  50. SINISI, VITO F. [1976]Leśniewski's Analysis of Russell's Antinomy,NDJFL, 17, 19–34.Google Scholar
  51. SŁUPECKI, JERZY [1953]St. Leśniewski's Protothetics,SL, 1, 44–112.Google Scholar
  52. — [1955]S. Leśniewski's Calculus of Names,SL, 3, 7–73.Google Scholar
  53. SOBOCIŃSKI, BOLESŁAW [1934]O kolejnych uproszczeniach aksjomatyki “ontologji” prof. St. Leśniewskiego,Fragmenty Filozoficzne, 143–160.Google Scholar
  54. SOBOCIŃSKI, BOLESŁAW [1949]An Investigation of Protothetic, Cahiers de l'Institut d'Etudes Polonaises en Belgique, no, 5, Brussels.Google Scholar
  55. — [1950]L'analyse de l'antinomie Russellienne par Leśniewski,Methodos, 1, no. 1, 94–107; no. 2, 220–228; no. 3, 308–316; 2, 237–257.Google Scholar
  56. — [1953]Z badań nad aksjomatyką protothetyki Stanislawa Leśniewskiego,Rocznik, 4, 18–20.Google Scholar
  57. — [1954]Studies in Leśniewski's Mereology,Rocznik, 5, 34–48.Google Scholar
  58. — [1955]On Well Constructed Axiom Systems,Rocznik, 6, 54–65.Google Scholar
  59. — [1960]On the Single Axioms of Protothetic I, II, III,NDJFL, 1, 52–73; 2, 110–126; 2, 129–148.Google Scholar
  60. — [1971a]Lattice-Theoretical and Mereological Forms of Hauber's Law,NDJFL, 12, 81–85.Google Scholar
  61. — [1971b]Atomistic Mereology I,NDJFL, 12, 89–103.Google Scholar
  62. — [1971c]Atomistic Mereology II,NDJFL, 12, 203–213.Google Scholar
  63. — [1971d]A Note on an Axiom-System of Atomistic Mereology,NDJFL, 12, 249–251.Google Scholar
  64. SULLIVAN, THEODORE F. [1971b]Affine Geometry Having a Solid as Primitive,NDJFL, 12, 1–61.Google Scholar
  65. — [1972a]The Name Solid as Primitive in Projective Geometry,NDJFL, 13, 95–97.Google Scholar
  66. — [1973b]The Geometry of Solids in Hilbert Spaces,NDJFL, 14, 575–580.Google Scholar
  67. — [1973c]Tarski's Definition of Point in Banach Spaces,Journal of Geometry, 3, 179–189.CrossRefGoogle Scholar
  68. TARSKI, ALRFED [1923]O wyrazie pierwotnym logistyki (On the primitive term of Logistic),PF, 26, 68–89.Google Scholar
  69. TARSKI, ALRFED [1929]Les fondements de la geometric des corps, Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego. supplement toAnnales de la Societé Polonaise de Mathématique, Kraków, 29–33.Google Scholar
  70. WELSH, PAUL J., JR. [1971]Primitivity in Mereology Ph. D. dissertation, University of Notre Dame.Google Scholar

Copyright information

© Warzawa 1977

Authors and Affiliations

  • V. Frederick Rickey
    • 1
  1. 1.Bowling Green State UniversityBowling GreenUSA

Personalised recommendations