, Volume 48, Issue 9, pp 800–808 | Cite as

The cephalopod heart: The evolution of a high-performance invertebrate pump

  • M. J. Wells
Multi-Author Reviews Control of Circulation in Invertebrates


Cephalopods typically have high metabolic rates. They have blood in which the oxygen carrier is haemocyanin, a pigment that is found only in solution and which never seems to be present in concentrations that will transport more than 4–5 vols % of oxygen. Their hearts must in consequence have very high cardiac outputs. In this account the performance of the heart ofNautilus, the only surviving ectocochleate, is contrasted with the performance of the hearts of coleoids,Octopus which has a relatively low metabolic rate (for a coleoid) and squids which have very high oxygen uptakes by any standards. In all these animals, heartbeat frequency is temperature-dependent and the additional oxygen demand in exercise is met very largely by a 2–3-fold increase in stroke volume. With the exception ofNautilus, cephalopods tend to utilise nearly all of the oxygen transported in the blood even at rest; they show very limited factorial scopes. Specific power output has, however, increased dramatically from 2.7 mWg−1 in an activeNautilus to 5.5 mWg−1 inOctopus and up to 20 or 30 mWg−1 in species ofLoligo. The increase is almost entirely due to a 10-fold increase in heartbeat frequency. It is argued that frequency cannot be used as a means of responding to extra demand in an animal that must also carry automatic compensation for changes in metabolic rate dependent upon the ambient temperature, and that the use of frequency in some squid may be associated with a reduced temperature tolerance. Cephalopod systemic hearts do not scale directly with body mass, like the hearts of fish and the higher vertebrates. Smaller cephalopods have relatively larger hearts (as Mass0.9). A typical 100-g coleoid would have a heart mass of 0.15 g. Oegopsid squids appear to be exceptional with hearts twice as large.

Key words

Cephalopod evolution cardiac performance scaling of hearts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourne, G. B., Blood pressure in the squid,Loligo pealei. Comp. Biochem. Physiol.72A (1982) 23–27.CrossRefGoogle Scholar
  2. 2.
    Bourne, G. B., Redmond, J. R., and Johansen, K., Nautilus pompilius: branchial circulation enhanced by an auxiliary pumping mechanism. Experientia33 (1977) 1453.CrossRefGoogle Scholar
  3. 3.
    Bourne, G. B., Redmond, J. R., and Johansen, K., Some aspects of the hemodynamics inNautilus pompilius. J. exp. Zool.205 (1978) 63–70.CrossRefGoogle Scholar
  4. 4.
    Boyle, P. R. (Ed.) Cephalopod Life Cycles, vol. 1, Species Accounts. Academic Press, London 1983.Google Scholar
  5. 5.
    Crile, G., and Quiring, D. P., A record of the body weight and certain organ and gland weights of 3,690 animals. Ohio J. Sci.40 (1940) 219–259.Google Scholar
  6. 6.
    Demont, M. E., and O'Dor, R. K., The effects of activity, temperature and mass on the respiratory metabolism of the squid,Illex illecebrosus. J. mar. biol. Ass. U.K.64 (1984) 535–543.Google Scholar
  7. 7.
    Forsythe, J. W., Hanlon, R. T., and DeRusha, R. Pilot large-scale culture ofSepia in biomedical research, in: La Seiche: The Cuttlefish, pp. 313–323. Ed. E. Boucaud-Camou. Centre de Publications, Université de Caen 1991.Google Scholar
  8. 8.
    Freadman, M. A., Hernandez, L., and Sharold, J., Swimming biology of squid,Loligo pealei. Am. Zool.24 (1984) 123A.Google Scholar
  9. 9.
    Hixon, R. F., Growth, Reproductive Biology, Distribution and Abundance of Three Species of Loliginid Squid (Myopsida, Cephalopoda) in the Northwest Gulf of Mexico. Ph.D. Thesis, University of Miami 1980.Google Scholar
  10. 10.
    Houlihan, D. F., Innes, A. J., Wells, M. J., and Wells, J., Oxygen consumption and blood gases ofOctopus vulgaris in hypoxic conditions. J. comp. Physiol.148 (1982) 35–40.Google Scholar
  11. 11.
    Johansen, K., and Huston, M. J., Effects of some drugs on the circulatory system of the intact, non-anaesthetised cephalopod,Octopus dofleini. Comp. Biochem. Physiol.5 (1962) 177–184.CrossRefGoogle Scholar
  12. 12.
    Johansen, K., Redmond, J. R., and Bourne, G. B., Respiratory exchange and transport of oxygen inNautilus pompilius. J. exp. Zool.205 (1978) 27–36.CrossRefGoogle Scholar
  13. 13.
    Johansen, K., and Martin, A. W., Circulation in the cephalopod,Octopus dofleini. Comp. Biochem. Physiol.5 (1962) 161–176.CrossRefPubMedGoogle Scholar
  14. 14.
    Kiceniuk, J. W., and Jones, D. R., The oxygen transport system in trout (Salmo gairdneri) during sustained exercise. J. exp. Biol.69 (1977) 247–260.Google Scholar
  15. 15.
    Landman, N. H., and Cochran, J. K., Growth and longevity inNautilus, in:Nautilus: The Biology and Palaeobiology of a Living Fossil, pp. 401–420 Eds W. B. Saunders and N. H. Landman. Plenum Press, New York 1987.Google Scholar
  16. 16.
    Lindstedt, S. L., and Calder, W. A., Body size, physiological time and longevity of homiothermic animals. Q. Rev. Biol.56 (1981) 1–16.CrossRefGoogle Scholar
  17. 17.
    Maginnis, L. A., and Wells, M. J., The oxygen consumption ofOctopus cyanea. J. exp. Biol.51 (1969) 607–613.Google Scholar
  18. 18.
    Mangold, K.,Octopus vulgaris, in: Cephalopod Life Cycles, pp. 335–364. Ed. P. Boyle, Academic Press, London 1983.Google Scholar
  19. 19.
    Martin, A. W. and Aldrich, F. A., Comparisons of hearts and branchial heart appendages in some cephalopods. Can. J. Zool.48 (1970) 751–756.Google Scholar
  20. 20.
    O'Dor, R. K., Respiratory metabolism and swimming performance of the squid,Loligo opalescens. Can. J. Fish aquat. Sci.39 (1982) 580–587.Google Scholar
  21. 21.
    O'Dor, R. K., and Webber, D. M., The constraints on cephalopods: Why squid aren't fish. Can. J. Zool.64 (1986) 1591–1605.Google Scholar
  22. 22.
    O'Dor, R. K., Wells, J., and Wells, M. J., Speed, jet pressure and oxygen consumption relationships in free-swimmingNautilus. J. exp. Biol.154 (1990) 383–396.Google Scholar
  23. 23.
    Prothero, J., Heart weight as a function of body weight in mammals, Growth43 (1979) 139–150.PubMedGoogle Scholar
  24. 24.
    Ransom, W. B., On the cardiac rhythm of invertebrates. J. Physiol.5 (1884) 261–341.Google Scholar
  25. 25.
    Redfield, A. C., and Goodkind, R., The significance of the bohr effect in the respiration and asphyxiation of the squid,Loligo pealei. J. exp. Biol.6 (1929) 340–349.Google Scholar
  26. 26.
    Schmidt-Nielsen, K., Scaling: why is animal size so important? Cambridge University Press, 1984.Google Scholar
  27. 27.
    Shadwick, R. E., O'Dor, R. K., and Gosline, J. M., Respiratory and cardiac function during exercise in squid. Can. J. Zool.68 (1990) 792–798.Google Scholar
  28. 28.
    Smith, P. J. S., Molluscan circulation: Haemodynamics and the heart, in: Circulation, Respiration and Metabolism, pp. 344–355. Ed. R. Gilles. Springer-Verlag, Berlin-Heidelberg 1985.Google Scholar
  29. 29.
    Snedecor, G. W., and Cochran, W. G., Comparison of regression lines, in: Statistical Methods, pp. 432–436. Iowa State University Press, Ames, Iowa 1967.Google Scholar
  30. 30.
    Stahl, W. R., Scaling of respiratory variables in mammals. J. appl. Physiol.150 (1967) 1039–1042.Google Scholar
  31. 31.
    Summer, W. C.,Loligo pealei, in: Cephalopod Life Cycles, pp. 115–142. Ed., P. Boyle. Academic Press, London 1983.Google Scholar
  32. 32.
    Van Heukelem, W. F.,Octopus cyanea, in: Cephalopod Life Cycles, vol. 1, pp. 267–276. Ed. P.R. Boyle. Academic Press, London 1983.Google Scholar
  33. 33.
    Webber, D. M., and O'Dor, R. K., Respiration and swimming performance of the short-finned squid,Illex illecebrosus. Northwest Atl. Fish. Organ. Sci. Council Stud.9 (1985) 133–138.Google Scholar
  34. 34.
    Wells, M. J., The heartbeat ofOctopus vulgaris. J. exp. Biol.78 (1979) 87–104.Google Scholar
  35. 35.
    Wells, M. J., Circulation in Cephalopods, in: The Mollusca, vol. 5, pp. 240–290. Eds A. S. M. Saleuddin and K. M. Wilbur Academic Press, San Diego 1983.Google Scholar
  36. 36.
    Wells, M. J., Oxygen uptake and the effect of feeding inNautilus. Veliger30 (1987) 65–71.Google Scholar
  37. 37.
    Wells, M. J., Duthie, G. G., Houlihan, D. F., Smith, P. J. S., and Wells, J., Blood flow and pressure changes in exercising octopuses (Octopus vulgaris). J. exp. Biol.131 (1987) 175–187.Google Scholar
  38. 38.
    Wells, M. J., Hanlon, R. T., Lee, P. G., and DiMarco, F. P., Respiratory and cardiac performance inLolliguncula brevis (Cephalopoda, Myopsida): the effects of activity, temperature and hypoxia. J. exp. Biol.138 (1988) 17–36.Google Scholar
  39. 39.
    Wells, M. J., O'Dor, R. K., Mangold, K., and Wells, J., Diurnal changes in activity and metabolic rate inOctopus vulgaris. J. mar. Behav. Physiol.9 (1983) 275–287.Google Scholar
  40. 40.
    Wells, M. J., O'Dor, R. K., Mangold, K., and Wells, J., Oxygen consumption in movement inOctopus. J. mar. Behav. Physiol.9 (1983) 289–303.Google Scholar
  41. 41.
    Wells, M. J., and Smith, P. J. S., The performance of the octopus circulatory system; a triumph of engineering over design. Experientia43 (1987) 487–499.Google Scholar
  42. 42.
    Wells, M. J., and Wells, J., Ventilation and oxygen uptake inNautilus. J. exp. Biol.118 (1985) 297–321.Google Scholar
  43. 43.
    Wells, M. J., and Wells, J., The circulatory response to acute hypoxia inOctopus. J. exp. Biol.104 (1983) 59–71.Google Scholar
  44. 44.
    Wells, M. J., and Wells, J., Blood flow in acute hypoxia in a cephalopod. J. exp. Biol.122 (1986) 345–353.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • M. J. Wells
    • 1
  1. 1.Department of ZoologyCambridge UniversityCambridge(England)

Personalised recommendations