General Relativity and Gravitation

, Volume 26, Issue 7, pp 687–729 | Cite as

Physical interpretation of vacuum solutions of Einstein's equations. Part II. Time-dependent solutions

  • W. B. Bonnor
  • J. B. Griffiths
  • M. A. H. MacCallum
Research Articles


The study of interpretations of the vacuum solutions of Einstein's field equations is continued by considering some well known time-dependent solutions. Among these are metrics representing accelerating particles, cylindrical and plane waves and cosmological solutions.


Plane Wave Field Equation Differential Geometry Physical Interpretation Vacuum Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonnor, W. B. (1992).Gen. Rel. Grav. 24, 551.Google Scholar
  2. 2.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (VEB Deutscher Verlag der Wissenschaften, Berlin / Cambridge University Press, Cambridge).Google Scholar
  3. 3.
    Synge, J. L. (1960).Relativity—The General Theory (North Holland, Amsterdam).Google Scholar
  4. 4.
    Bonnor, W. B., and Swaminarayan, N. S. (1964).Z. Phys. 177, 240.Google Scholar
  5. 5.
    Bonnor, W. B. (1966).Wissenschaftl. Z. der Friedrich-Schiller-UniversitÄt Jena 15, 71.Google Scholar
  6. 6.
    Infeld, L., and Schild, A. (1949).Rev. Mod. Phys. 21, 408.Google Scholar
  7. 7.
    Einstein, A., and Rosen, N. (1937).J. Franklin Inst. 223, 43.Google Scholar
  8. 8.
    Schmidt, B. G. (1981).Commun. Math. Phys. 78, 447.Google Scholar
  9. 9.
    Bičák, J. (1968).Proc. Roy. Soc. Lond. A302, 201.Google Scholar
  10. 10.
    Bičák, J. (1971). InRelativity and Gravitation, C. G. Kuper and A. Peres, eds. (Gordon and Breach, New York).Google Scholar
  11. 11.
    Bičák, J. (1985). InGalaxies, Axisymmetric Systems and Relativity, M. A. H. Mac-Callum, ed. (Cambridge University Press, Cambridge).Google Scholar
  12. 12.
    Kinnersley, W., and Walker, M. (1970).Phys. Rev. D 2, 1359.Google Scholar
  13. 13.
    Bonnor, W. B. (1983).Gen. Rel. Grav. 15, 535.Google Scholar
  14. 14.
    Farhoosh, H., and Zimmerman, R. L. (1980).Phys. Rev. D 21, 317.Google Scholar
  15. 15.
    Hoenselaers, C. (1985). InGalaxies, Axisymmeiric Systems and Relativity, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge).Google Scholar
  16. 16.
    Ernst, F. J. (1978).J. Math. Phys. 19, 1968.Google Scholar
  17. 17.
    Bonnor, W. B. (1988).Gen. Rel. Grav. 20, 607.Google Scholar
  18. 18.
    Bičák, J., Hoenselaers, C., and Schmidt, B. G. (1983).Proc. Roy. Soc. Lond. A390, 397.Google Scholar
  19. 19.
    Bičák, J., Hoenselaers, C., and Schmidt, B. G. (1983).Proc. Roy. Soc. Lond. A390, 411.Google Scholar
  20. 20.
    Bičák, J., (1987). InGravitation and Geometry, W. Rindler and A. Trautman, eds. (Bibliopolis, Naples).Google Scholar
  21. 21.
    Bičák, J., and Schmidt, B. (1989).Phys. Rev. D 40, 1827.Google Scholar
  22. 22.
    Kompaneetz, A. S. (1958).Sov. Phys. JETP 7, 659.Google Scholar
  23. 23.
    Thorne, K. S. (1965).Phys. Rev. B 138, 251.Google Scholar
  24. 24.
    Chandrasekhar, S. (1986).Proc. Roy. Soc. Lond. A408, 209.Google Scholar
  25. 25.
    Rosen, N. (1954).Bull. Res. Council Israel. 3, 328.Google Scholar
  26. 26.
    Marder, L. (1958).Proc. Roy. Soc. Lond. A244, 524.Google Scholar
  27. 27.
    Stachel, J. J. (1966).J. Math. Phys. 7, 1321.Google Scholar
  28. 28.
    Bondi, H., van der Burg, M. G. J., and Metzner, A. W. K. (1962).Proc. Roy. Soc. Lond. A269, 21.Google Scholar
  29. 29.
    Piran, T., Safier, P. N., and Stark, R. F. (1985).Phys. Rev. D 32, 3101.Google Scholar
  30. 30.
    Tomimatsu, A. (1989).Gen. Rel. Grav. 21, 613.Google Scholar
  31. 31.
    Wang, A.-Z. (1991).Phys. Rev. D 44, 1120.Google Scholar
  32. 32.
    Bonnor, W. B. (1957).J. Mathematics and Mechanics 6, 203.Google Scholar
  33. 33.
    Weber, J., and Wheeler, J. A. (1957).Rev. Mod. Phys. 29, 429.Google Scholar
  34. 34.
    Dagotto, A. D., Gleiser, R. J., and Nicasio, C. O. (1991).Class. Quant. Grav. 8, 1185.Google Scholar
  35. 35.
    Fustero, X., and Verdaguer, E. (1986).Gen. Rel. Grav. 18, 1141.Google Scholar
  36. 36.
    Robinson, I., and Trautman, A. (1960).Phys. Rev. Lett. 4, 431.Google Scholar
  37. 37.
    Robinson, I., and Trautman, A. (1962).Proc. Roy. Soc. Lond. A265, 463.Google Scholar
  38. 38.
    Robinson, I. (1989).Class. Quant. Grav. 6, 1863.Google Scholar
  39. 39.
    Newman, E. T., and Unti, T. W. J. (1963).J. Math. Phys. 4, 1467.Google Scholar
  40. 40.
    Robinson, I., and Robinson, J. R. (1972). InGeneral Relativity, L. O'Raifeartaigh, ed. (Clarendon Press, Oxford).Google Scholar
  41. 41.
    Hogan, P. A., and Imaeda, M. (1979).J. Phys. A 12, 1051.Google Scholar
  42. 42.
    Hogan, P. A., and Imaeda, M. (1979).J. Phys. A 12, 1071.Google Scholar
  43. 43.
    Foster, J., and Newman, E. T. (1967).J. Math. Phys. 8, 189.Google Scholar
  44. 44.
    Lukács, B., Perjés, Z., Porter, J., and Sebestyén, á. (1984).Gen. Rel. Grav. 16, 691.Google Scholar
  45. 45.
    Rendall, A. D. (1988).Class. Quant. Grav. 5, 1339.Google Scholar
  46. 46.
    Singleton, D. (1990).Class. Quant. Grav. 7, 1333.Google Scholar
  47. 47.
    ChruŚciel, P. T. (1991).Commun. Math. Phys. 137, 289.Google Scholar
  48. 48.
    Frittelli, S., and Moreschi, O. M. (1992).Gen. Rel. Grav. 24, 575.Google Scholar
  49. 49.
    Hoenselaers, C., and Perjés, Z. (1993).Class. Quant. Grav. 10, 375.Google Scholar
  50. 50.
    Bičák, J. (1990). InProc. V Marcel Grossman Meeting, Perth, D. G. Blair, M. J. Buckingham, R. Ruffini, eds. (World Scientific, Singapore).Google Scholar
  51. 51.
    Kundt, W. (1961).Z. Physik 163, 77.Google Scholar
  52. 52.
    Takeno, H. (1961).Sci. Rep. Res. Inst. Theor. Phys. Hiroshima Univ. 1.Google Scholar
  53. 53.
    Ehlers, J., and Kundt, W. (1962). InGravitation: an introduction to current research, L. Witten, ed. (Wiley, New York).Google Scholar
  54. 54.
    Zakharov, V. D. (1973).Gravitational waves in Einstein's theory of gravitation (Halsted Press, New York).Google Scholar
  55. 55.
    Penrose, R. (1966). InPerspectives in geometry and relativity B. Hoffmann, ed. (Indiana University Press, Bloomington).Google Scholar
  56. 56.
    Bonnor, W. B. (1969).Commun. Math. Phys. 13, 163.Google Scholar
  57. 57.
    Aichelburg, P. C. (1971).Acta Phys. Austriaca 34, 279.Google Scholar
  58. 58.
    Aichelberg, P. C., and Sexl, R. U. (1971).Gen. Rel. Grav. 3, 303.Google Scholar
  59. 59.
    D'Eath, P. D., and Payne, P. N. (1993).Phys. Rev. D 46, 658.Google Scholar
  60. 60.
    Ferrari, V., and Pendenza, P. (1990).Gen. Rel. Grav. 22, 1105.Google Scholar
  61. 61.
    Baldwin, O. R., and Jeffery, G. B. (1926).Proc. Roy. Soc. Lond. A111, 95.Google Scholar
  62. 62.
    Rosen, N. (1937).Phys. Z. Sowjet. 12, 366.Google Scholar
  63. 63.
    Bondi, H., Pirani, F. A. E., and Robinson, I. (1959).Proc. Roy. Soc. Lond. A251, 519.Google Scholar
  64. 64.
    Penrose, R. (1965).Rev. Mod. Phys. 37, 215.Google Scholar
  65. 65.
    Bondi, H., and Pirani, F. A. E. (1989).Proc. Roy. Soc. Lond. A421, 395.Google Scholar
  66. 66.
    Griffiths, J. B. (1991).Colliding plane waves in general relativity (Oxford University Press, Oxford).Google Scholar
  67. 67.
    Hauser, I., and Ernst, F. J. (1989).J. Math. Phys. 30, 872.Google Scholar
  68. 68.
    Hauser, I., and Ernst, F. J. (1989).J. Math. Phys. 30, 2322.Google Scholar
  69. 69.
    Hauser, I., and Ernst, F. J. (1990).J. Math. Phys. 31, 871.Google Scholar
  70. 70.
    Hauser, I., and Ernst, F. J. (1991).J. Math. Phys. 32, 198.Google Scholar
  71. 71.
    Khan, K. A., and Penrose, R. (1971).Nature 229, 185.Google Scholar
  72. 72.
    Matzner, R. A., and Tipler, F. J. (1984).Phys. Rev. D 29, 1575.Google Scholar
  73. 73.
    Ferrari, V., and Ibáñez, J. (1987).Gen. Rel. Grav. 19, 405.Google Scholar
  74. 74.
    Ferrari, V., and Ibáñez, J. (1988).Proc. Roy. Soc. Lond. A417, 417.Google Scholar
  75. 75.
    Hayward, S. A. (1989).Class. Quant. Grav. 6, 1021.Google Scholar
  76. 76.
    Nutku, Y., and Halil, M. (1977).Phys. Rev. Lett. 39, 1379.Google Scholar
  77. 77.
    Chandrasekhar, S., and Ferrari, V. (1984).Proc. Roy. Soc. Lond. A396, 55.Google Scholar
  78. 78.
    Chandrasekhar, S., and Xanthopoulos, B. C. (1986).Proc. Roy. Soc. Lond. A408, 175.Google Scholar
  79. 79.
    Feinstein, A., and Ibáñez, J. (1989).Phys. Rev. D 39, 470.Google Scholar
  80. 80.
    Yurtsever, U. (1988).Phys. Rev. D 38, 1706.Google Scholar
  81. 81.
    Yurtsever, U. (1988).Phys. Rev. D 38, 1731.Google Scholar
  82. 82.
    Yurtsever, U. (1989).Phys. Rev. D 40, 329.Google Scholar
  83. 83.
    Centrella, J., and Matzner, R. A. (1979).Astrophys. J. 230, 311.Google Scholar
  84. 84.
    Centrella, J. (1980).Astrophys. J. 241, 875.Google Scholar
  85. 85.
    Centrella, J., and Matzner, R. A. (1982).Phys. Rev. D 25, 930.Google Scholar
  86. 86.
    Lifshitz, E. M., and Khalatnikov, I. M. (1963).Adv. Phys. 12, 185.Google Scholar
  87. 87.
    Kasner, E. (1921).Amer. J. Math. 43, 217.Google Scholar
  88. 88.
    Belinskii, V. A., Lifshitz, E. M., and Khalatnikov, I. M. (1969).Zh.E.T.F. 56, 1700; English transl. (1969).Sov. Phys. JETP 29, 911.Google Scholar
  89. 89.
    Taub, A. H. (1951).Ann. Math. 53, 472.Google Scholar
  90. 90.
    Misner, C. W. (1969).Phys. Rev. 186, 1319.Google Scholar
  91. 91.
    MacCallum, M. A. H. (1982). InThe origin and evolution of galaxies (Proc. NATO Advanced Study Institute, Erice, 1981), B. J. T. Jones and J. E. Jones, eds. (D. Reidel, Dordrecht).Google Scholar
  92. 92.
    Wheeler, J. A. (1964). InRelativity, Groups and Topology (Proc. 1963 Les Houches summer school), C. DeWitt and B. DeWitt, eds. (Blackie and Son, London & Glasgow).Google Scholar
  93. 93.
    Matzner, R. A. (1968).J. Math. Phys. 9, 1063.Google Scholar
  94. 94.
    Grishchuk, L. P., Doreshkevich, A. G., and Yudin, V. M. (1975).Zh.E.T.F. 69, 1857; English transl. (1976).Sov. Phys. JETP 42, 943.Google Scholar
  95. 95.
    King, D. H. (1991).Phys. Rev. D 44, 2356.Google Scholar
  96. 96.
    King, D. H. (1990). “Mach's principle and rotating universes”. Ph.D. thesis, University of Texas.Google Scholar
  97. 97.
    Lukash, V. N. (1974).Zh.E.T.F. 67, 1594; English transl. (1975).Sov. Phys. JETP 40, 792.Google Scholar
  98. 98.
    Siklos, S. T. C. (1981).J. Phys. A14, 395.Google Scholar
  99. 99.
    Newman, E. T., Tamburino, L., and Unti, T. (1963).J. Math. Phys. 4, 915.Google Scholar
  100. 100.
    Misner, C. W. (1967). InRelativity Theory and Astrophysics I. Relativity and Cosmology, J. Ehlers, ed. (Amer. Math. Soc. Lectures in Applied Mathematics 8, AMS, New York).Google Scholar
  101. 101.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).Google Scholar
  102. 102.
    Misner, C. W., and Taub, A. H. (1968).Zh.E.T.F. 55, 233; English transl. (1969).Sov. Phys. JETP 28, 122.Google Scholar
  103. 103.
    Hájíček, P. (1970).Commun. Math. Phys. 17, 109.Google Scholar
  104. 104.
    Verdaguer, E. (1993).Phys. Rep. 229, 1.Google Scholar
  105. 105.
    Gowdy, R. H. (1971).Phys. Rev. Lett. 27, 826.Google Scholar
  106. 106.
    Belinskii, V. A., Lifshitz, E. M., and Khalatnikov, I. M. (1970).Adv. Phys. 19, 525.Google Scholar
  107. 107.
    Gowdy, R. H. (1974).Ann. Phys. (NY) 83, 203.Google Scholar
  108. 108.
    Gowdy, R. H. (1975).J. Math. Phys. 16, 224.Google Scholar
  109. 109.
    Kitchingham, D. W. (1986).Class. Quant. Grav. 3, 133.Google Scholar
  110. 110.
    ChruŚciel, P. T. (1990).Ann. Phys. (NY) 202, 100.Google Scholar
  111. 111.
    ChruŚciel, P. T., Isenberg, J., and Moncrief, V. (1990).Class. Quant. Grav. 7, 1671.Google Scholar
  112. 112.
    Adams, P. J., Hellings, R. W., Zimmerman, R. L., Farshoosh, H., Levine, D. I., and Zeldich, S. (1982).Astrophys. J. 253, 1.Google Scholar
  113. 113.
    Feinstein, A., and Charach, Ch. (1986).Class. Quant. Grav. 3, L5.Google Scholar
  114. 114.
    Feinstein, A. (1987).Phys. Rev. D 35, 3263.Google Scholar
  115. 115.
    Carr, B. J., and Verdaguer, E. (1983).Phys. Rev. D 28, 2995.Google Scholar
  116. 116.
    Verdaguer, E. (1987).Nuovo Cimento B 100, 787.Google Scholar
  117. 117.
    Belinskii, V. A., and Zakharov, V. E. (1980).Sov. Phys. JETP 50, 1.Google Scholar
  118. 118.
    Ibáñez, J., and Verdaguer, E. (1983).Phys. Rev. Lett. 51, 1313.Google Scholar
  119. 119.
    Céspedes, J., and Verdaguer, E. (1987).Phys. Rev. D 36, 2259.Google Scholar
  120. 120.
    Wainwright, J. (1979).Phys. Rev. D 20, 3031.Google Scholar
  121. 121.
    Boyd, P. T., Centrella, J. M., and Klasky, S. A. (1991).Phys. Rev. D 43, 379.Google Scholar
  122. 122.
    Belinskii, V. A. (1991).Phys. Rev. D 44, 3109.Google Scholar
  123. 123.
    Kordas, P. (1993).Phys. Rev. D 48, 5013.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • W. B. Bonnor
    • 1
  • J. B. Griffiths
    • 2
  • M. A. H. MacCallum
    • 1
  1. 1.School of Mathematical Sciences, Queen Mary and Westfield CollegeUniversity of LondonLondonUK
  2. 2.Department of Mathematical SciencesLoughborough University of TechnologyLoughboroughUK

Personalised recommendations