Advertisement

General Relativity and Gravitation

, Volume 26, Issue 7, pp 637–645 | Cite as

Energy-momentum complex for nonlinear gravitational Lagrangians in the first-order formalism

  • Andrzej Borowiec
  • Marco Ferraris
  • Mauro Francaviglia
  • Igor Volovich
Research Articles

Abstract

It has been recently shown that there is universality of Einstein equations, in the first-order (Palatini) formalism, in the sense that for a generic nonlinear Lagrangian depending only on the scalar curvature of a metric and a torsionless connection one always gets Einstein equations. In this paper the energy-density flow for nonlinear gravitational Lagrangians is investigated in this formalism. It is shown that in the generic case the energy-momentum complex does not depend on the Lagrangian and is in fact equal to the Komar complex, known in the purely metric formalism for the standard linear Hilbert Lagrangian.

Keywords

Differential Geometry Scalar Curvature Einstein Equation Standard Linear Torsionless Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferraris, M., Francaviglia, M., and Volovich, I. (1993). “The Universality of Einstein Equations”. Preprint TO-JLL-P 1/93 (Torino, June 1993); to appear inClass. Quant. Grav. Google Scholar
  2. 2.
    Ferraris, M., Francaviglia, M. and Volovich, I. (1993). “A Model of Topological Affine Gravity in Two Dimensions and Topology Control”. Preprint TO-JLL-P 2/93 (Torino, June 1993).Google Scholar
  3. 3.
    Kijowski, J., and Tulczyjew, W. M. (1979).A Symplectic Framework for Field Theories (Lecture Notes in Physics 107, Springer-Verlag Berlin).Google Scholar
  4. 4.
    Murphy, G. L. (1990).Int. J. Theor. Phys. 29, 1003.Google Scholar
  5. 5.
    Novotny, J. (1992). “On the Energy-Momentum Complex of Gravitational Field in the Palatini Formalism”. Preprint MUBr-92/1 (Brno, May 1992).Google Scholar
  6. 6.
    Stelle, K. A. (1978).Gen. Rel. Grav. 5, 353.Google Scholar
  7. 7.
    Ferraris, M., and Francaviglia, M. (1990).Gen. Rel. Grav. 22, 965.Google Scholar
  8. 8.
    Magnano, G., Ferraris, M., and Francaviglia, M. (1987).Gen. Rel. Grav. 19, 465.Google Scholar
  9. 9.
    Higgs, P. W. (1959).Nuovo Cimento 11, 816.Google Scholar
  10. 10.
    Ferraris, M. (1986). InAtti del VI Conv. Naz. di Rel. Gen. e Fis. della Grav. (Florence, 1984), M. Modugno, ed. (Tecnoprint, Bologna).Google Scholar
  11. 11.
    Ferraris, M., and Francaviglia, M. (1985).J. Math. Phys. 26, 1243.Google Scholar
  12. 12.
    Ferraris, M., and Francaviglia, M. (1992).Class. Quant. Grav. 9 Supplement, S79.Google Scholar
  13. 13.
    Ferraris, M., Francaviglia, M., and Robutti, O. (1987). InGéométrie et Physique (Proc. Journées Relativistes de Marseille 1985), Y. Choquet-Bruhat, B. Coll, R. Kerner and A. Lichnerowicz, eds. (Travaux en Cours, Hermann, Paris).Google Scholar
  14. 14.
    Komar, A. (1959).Phys. Rev. 113, 934.Google Scholar
  15. 15.
    Mizkievich, N. V., Efremov, A. P., and Nesterov, A. I. (1989).Field Dynamics in General Relativity (Nauka, Moscow, in Russian).Google Scholar
  16. 16.
    Trautman, A. (1962). InGravitation. An Introduction to Current Research, L. Witten, ed. (Wiley, New York).Google Scholar
  17. 17.
    Ferraris, M., Francaviglia, M., and Magnano, G. (1994). In preparation.Google Scholar
  18. 18.
    Ferraris, M., Francaviglia, M., and Borowiec, A. (1994). In preparation.Google Scholar
  19. 19.
    Persides, S. (1978).Gen. Rel. Grav. 10, 609.Google Scholar
  20. 20.
    Persides, S., Papadopoulos, D. (1979).Gen. Rel. Grav. 11, 233.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Andrzej Borowiec
    • 1
  • Marco Ferraris
    • 2
  • Mauro Francaviglia
    • 1
  • Igor Volovich
    • 1
  1. 1.Istituto di Fisica Matematica “J.-L. Lagrange”Università di TorinoTorinoItaly
  2. 2.Dipartimento di MatematicaUniversità di Cagliari Via Ospedale 72CagliariItaly

Personalised recommendations