aequationes mathematicae

, Volume 40, Issue 1, pp 261–270 | Cite as

On the identric and logarithmic means

  • J. Sándor
Research Papers


Leta, b > 0 be positive real numbers. The identric meanI(a, b) of a andb is defined byI = I(a, b) = (1/e)(b b /a a ) 1/(b−a) , fora ≠ b, I(a, a) = a; while the logarithmic meanL(a, b) ofa andb isL = L(a, b) = (b − a)/(logb − loga), fora ≠ b, L(a, a) = a. Let us denote the arithmetic mean ofa andb byA = A(a, b) = (a + b)/2 and the geometric mean byG =G(a, b) =\(\sqrt {ab}\). In this paper we obtain some improvements of known results and new inequalities containing the identric and logarithmic means. The material is divided into six parts. Section 1 contains a review of the most important results which are known for the above means. In Section 2 we prove an inequality which leads to some improvements of known inequalities. Section 3 gives an application of monotonic functions having a logarithmically convex (or concave) inverse function. Section 4 works with the logarithm ofI(a, b), while Section 5 is based on the integral representation of means and related integral inequalities. Finally, Section 6 suggests a new mean and certain generalizations of the identric and logarithmic means.

AMS (1980) subject classification

Primary 26D99 Secondary 26D15, 26D20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alzer, H.,Two inequalities for means. C.R. Math. Rep. Acad. Sci. Canada.9 (1987), 11–16.Google Scholar
  2. [2]
    Alzer, H.,Ungleichungen für Mittelwerte. Arch. Math. (Basel)47 (1986), 422–426.Google Scholar
  3. [3]
    Alzer, H.,On an inequality of Ky Fan. J. Math. Anal. Appl.137 (1989), 168–172.CrossRefGoogle Scholar
  4. [4]
    Beckenbach, E. F. andBellman, R.,Inequalities. Springer, New York, 1965.Google Scholar
  5. [5]
    Carlson, B. C.,Some inequalities for hypergeometric functions. Proc. Amer. Math. Soc.17 (1966), 32–39.Google Scholar
  6. [6]
    Carlson, B. C.,The logarithmic mean. Amer. Math. Monthly79 (1972), 615–618.Google Scholar
  7. [7]
    Hardy, G. H., Littlewood, J. E. andPolya, G.,Inequalities. Cambridge Univ. Press, Cambridge—New York, 1988.Google Scholar
  8. [8]
    Leach, E. B. andSholander, M. C.,Extended mean values II. J. Math. Anal. Appl.92 (1983), 207–223.CrossRefGoogle Scholar
  9. [9]
    Lin, T. P.,The power mean and the logarithmic mean. Amer. Math. Monthly81 (1974), 879–883.Google Scholar
  10. [10]
    Mitrinovic, D. S. (in cooperation withP. M. Vasic),Analytic Inequalities. Springer, Berlin—Heidelberg—New York, 1970.Google Scholar
  11. [11]
    Ostle, B. andTerwilliger, H. L.,A comparison of two means. Proc. Montana Acad. Sci.17 (1957), 69–70.Google Scholar
  12. [12]
    Rüthing, D.,Eine allgemeine logarithmische Ungleichung. Elem. Math.41 (1986), 14–16.Google Scholar
  13. [13]
    Sándor, J.,Some integral inequalities. Elem. Math.43 (1988), 177–180.Google Scholar
  14. [14]
    Sándor, J.,An application of the Jensen — Hadamard inequality. To appear in Nieuw Arch. Wisk. (4)8 (1990).Google Scholar
  15. [15]
    Sándor, J.,On an inequality of Ky Fan. To appear in Sem. Math. Anal., Babes—Bolyai Univ.Google Scholar
  16. [16]
    Seiffert, H.-J.,Eine Integralungleichung für streng monotone Funktionen mit logarithmische konvexer Umkehrfunktion. Elem. Math.44 (1989), 16–17.Google Scholar
  17. [17]
    Stolarsky, K. B.,Generalizations of the logarithmic mean. Math. Mag.48 (1975), 87–92.Google Scholar
  18. [18]
    Stolarsky, K. B.,The power and generalized logarithmic means. Amer. Math. Monthly87 (1980), 545–548.Google Scholar
  19. [19]
    Zaiming, Z.,Problem E 3142. Amer. Math. Monthly93 (1986), 299.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • J. Sándor
    • 1
  1. 1.Jud. HarghitaRomania

Personalised recommendations