aequationes mathematicae

, Volume 40, Issue 1, pp 111–135 | Cite as

A survey of Sylvester's problem and its generalizations

  • P. Borwein
  • W. O. J. Moser
Survey Paper

Summary

LetP be a finite set of three or more noncollinear points in the plane. A line which contains two or more points ofP is called aconnecting line (determined byP), and we call a connecting lineordinary if it contains precisely two points ofP. Almost a century ago, Sylvester posed the disarmingly simple question:Must every set P determine at least one ordinary line? No solution was offered at that time and the problem seemed to have been forgotten. Forty years later it was independently rediscovered by Erdös, and solved by Gallai. In 1943 Erdös proposed the problem in the American Mathematical Monthly, still unaware that it had been asked fifty years earlier, and the following year Gallai's solution appeared in print. Since then there has appeared a substantial literature on the problem and its generalizations.

In this survey we review, in the first two sections, Sylvester's problem and its generalization to higher dimension. Then we gather results about the connecting lines, that is, the lines containing two or more of the points. Following this we look at the generalization to finite collections of sets of points. Finally, the points will be colored and the search will be for monochromatic connecting lines.

AMS (1980) subject classification

Primary 51A20 Secondary 52A37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balomenos, R. H., Bonnice, W. E. andSilverman, R. J. 1966.Extensions of Sylvester's theorem. Canad. Math. Bull.9, 1–14. MR:33, # 6477.Google Scholar
  2. Basterfield, J. G. andKelly, L. M. 1968.A characterization of sets of n points which determine n hyperplanes. Proc. Cambridge Philos. Soc.64, 585–588. MR:38, # 2040.Google Scholar
  3. Baston, V. J. andBostock, F. A. 1978.A Gallai-type problem. J. Combin. Theory Ser. A24, 122–125. MR:57, # 150.CrossRefGoogle Scholar
  4. Beck, J. 1983.On a “lattice property” of the plane and some problems in combinatorial geometry. Combinatorica3, 281–297. Zbl 533.52004.Google Scholar
  5. Bonnice, W. andEdelstein, M. 1967.Flats associated with finite sets in P d. Niew Arch. Wisk.15, 11–14. MR:35, # 7189.Google Scholar
  6. Bonnice, W. andKelly, L. M. 1971.On the number of ordinary planes. J. Combin. Theory11, 45–53. MR:45, # 1784.CrossRefGoogle Scholar
  7. Boros, E., Füredi Z. andKelly, L. M. On representing Sylvester-Gallai designs. Discrete Comput. Geom.4, 345–348.Google Scholar
  8. Borwein, J. 1979.Monochrome lines in the plane. Math. Mag.52, 41–45.Google Scholar
  9. Borwein, J. 1980.Problems 297, 298. Canad. Math. Bull.23, 506.Google Scholar
  10. Borwein, P. 1982.On monochrome lines and hyperplanes. J. Combin. Theory Ser. A33, 76–81.CrossRefGoogle Scholar
  11. Borwein, P. 1983a.On Sylvester's problem and Haar spaces. Pacific J. Math.109, 275–278.Google Scholar
  12. Borwein, P. 1983b.The Desmic conjecture. J. Combin. Theory Ser. A35, 1–9.CrossRefGoogle Scholar
  13. Borwein, P. 1984.Sylvester's problem and Motzkin's theorem for countable and compact sets. Proc. Amer. Math. Soc.90, 580–584.Google Scholar
  14. Borwein, P. andEdelstein, M. 1983.A conjecture related to Sylvester's problem. Amer. Math. Monthly90, 389–390.MathSciNetGoogle Scholar
  15. Brakke, K. A. 1972.Some new values of Sylvester's function for n noncollinear points. J. Undergrad. Math.4, 11–14.Google Scholar
  16. Bruijn, N. G. de andErdös, P. 1948.On a combinatorial problem. Neder. Akad. Wetensch. Proc.51, 1277–1279 (=Indagationes Math10, 421–423). MR:10, p. 424.Google Scholar
  17. Burckhardt, J. J. 1940.Über konvexe Körper mit Mittlepunkt. Vierteljahrsschr. Naturforsch: Ges. Zürich85, 149–154.Google Scholar
  18. Burr, S. A., Grünbaum, B. andSloane.N. J. A. 1974.The Orchard Problem. Geom. Dedicata2, 397–424. MR:49, # 2428.CrossRefGoogle Scholar
  19. Chakerian, G. D. 1970.Sylvester's problem on collinear points and a relative. Amer. Math. Monthly77, 164–167. MR:41, # 3305.Google Scholar
  20. Coxeter, H. S. M. 1984.A problem of collinear points. Amer. Math. Monthly55, 26–28. MR:9, p. 458.Google Scholar
  21. Coxeter, H. S. M. 1955.The Real Projective Plane (2nd ed.). Cambridge University Press, Cambridge. MR:10, p. 729.Google Scholar
  22. Coxeter, H. S. M. 1968.Twelve Geometric Essays. Southern Illinois University Press, Carbondale, IL. MR:46, # 9843.Google Scholar
  23. Coxeter, H. S. M. 1969.Introduction to Geometry (2nd ed.). Wiley, New York. MR:49, # 11369.Google Scholar
  24. Coxeter, H. S. M. 1973.Regular Polytopes (3rd ed.). Dover, New York. MR:51, # 6554.Google Scholar
  25. Croft, H. T. 1967.Incidence incidents. Eureka (Cambridge)30, 22–26.Google Scholar
  26. Crowe, D. W. andMcKee, T. A. 1968.Sylvester's problem on collinear points. Math. Mag.41, 30–34. MR:38, # 3761.Google Scholar
  27. Dirac, G. A. 1951.Collinearity properties of sets of points. Quart. J. Math.2, 221–227. MR:13, p. 270.Google Scholar
  28. Dirac, G. A. 1959.Review of Kelly and Moser (1958). MR:20, # 3494.Google Scholar
  29. Edelstein, M. 1957.A further generalization of a problem of Sylvester. Riveon Lamatematika11, 50–55. Hebrew. English summary. MR:21, # 2211.Google Scholar
  30. Edelstein, M. 1969.Hyperplanes and lines associated with families of compact sets in locally convex spaces. Math. Scand.25, 25–30. MR:41, # 983.Google Scholar
  31. Edelstein, M., Herzog, F. andKelly, L. M. 1963.A further theorem of the Sylvester type. Proc. Amer. Math. Soc.14, 359–363. MR:26, # 4333.Google Scholar
  32. Edelstein, M. andKelly, L. M. 1966.Bisecants of finite collections of sets in linear spaces. Canad. J. Math.18, 375–380. MR:32, # 6185.Google Scholar
  33. Edmonds, J., Lovász, andMandel, A. 1980.Solution to problem in vol. 1, p. 250. Math. Intelligencer2, 106–107.Google Scholar
  34. Erdös, P. 1943.Problem 4065. Amer. Math. Monthly50, 65.Google Scholar
  35. Erdös, P. 1944.Solution of Problem 4065. Amer. Math. Monthly51, 169–171.Google Scholar
  36. Erdös, P. 1972.On a problem of Grünbaum. Canad. Math. Bull.15, 23–25. MR:47, # 5709.Google Scholar
  37. Erdös, P., 1973.Problems and results in combinatorial analysis. (Technion Preprint Series No. MT-182). Technion, Haifa.Google Scholar
  38. Erdös, P. 1975.On some problems of elementary and combinatorial geometry. Ann. Mat. Pura Appl. (4)103, 99–108. MR:54, # 113.Google Scholar
  39. Erdös, P. 1980.Some combinatorial problems in geometry. Geometry and Differential Geometry (Proc. Conf. Univ. Haifa 1979), 46–53. (Lecture Notes in Math., Vol. 792). Springer, Berlin.Google Scholar
  40. Erdös, P. 1982.Personal reminiscences and remarks on the mathematical work of Tibor Gallai. Combinatorica2, 207–212.Google Scholar
  41. Erdös, P. 1983.Combinatorial problems in geometry. Math. Chronicle12, 35–54.Google Scholar
  42. Erdös, P. 1984a.Some old and new problems on combinatorial geometry. Convexity and Graph Theory (Jerusalem, 1981), 129–136. (North-Holland Math. Studies, Vol. 87). MR:87b, # 52018.Google Scholar
  43. Erdös, P. 1984b.Some old and new problems on combinatorial geometry. Annals Discrete Math.20, 129–136.Google Scholar
  44. Erdös, P. 1984c.Research problems. Period Math. Hung.15, 101–103, Zbl 537.0515.Google Scholar
  45. Erdös, P. 1985.Problems and results in combinatorial geometry. Discrete geometry and convexity (New York, 1982), 1–11. (Ann. New York Acad. Sci., Vol. 440). MR:87g, # 52001.Google Scholar
  46. Erdös, P. andPurdy, G. 1976.Some extremal problems in geometry. IV. Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1976, 307–322. (Congressus Numerantium, Vol. XVII). Utilitas Math., Winnipeg, Man. MR:55, # 10292.Google Scholar
  47. Gallai, T. 1944.Solution to Problem 4065. Amer. Math. Monthly51, 169–171.Google Scholar
  48. Grünbaum, B. 1956.A generalization of a problem of Sylvester. Riveon Lematematika10, 46–48. (Hebrew. English summary) MR:19, p. 667.Google Scholar
  49. Grünbaum, B. 1972.Arrangements and Spreads. (CBMS, No. 10). Amer. Math. Soc., Providence, RI. MR:46, # 6148.Google Scholar
  50. Grünbaum, B. 1975.Arrangements of colored lines. Notices Amer. Math. Soc.22, A-200.Google Scholar
  51. Grünbaum, B. 1976.New views on some old questions of combinatorial geometry. (Colloq. Int. Theorie Comb., Roma 1973, Tomo 1), 451–468. MR:57, # 10605. Zbl 347.52004.Google Scholar
  52. Grünbaum, B. andShephard, G. C. 1984.Simplicial arrangements in projective 3-space. (Coxeter Festschrift) Mitt. Math. Sem. Giessen166, 49–101.Google Scholar
  53. Guy, R. K. 1971.Problem 15. Unsolved combinatorial problems. Combinatorial Mathematics and its Applications (Proceedings Conf. Oxford 1969, Editor, D. J. A. Welsh), 121–127. Academic Press, London. MR:43, # 3126.Google Scholar
  54. Hadwiger, H., Debrunner, H. andKlee, V. 1964.Combinatorial Geometry in the Plane. Holt, Rinehart and Winston, New York. MR:29, # 1577.Google Scholar
  55. Hanani, H. 1951.On the number of straight lines determined by n points. Riveon Lematematika5, 10–11. MR:13, p. 5.Google Scholar
  56. Hanani, H. 1954/5.On the number of lines and planes determined by d points. Technion Israel Tech. Sci. Publ.6, 58–63.Google Scholar
  57. Hansen, S. 1965.A generalization of a theorem of Sylvester on the lines determined by a finite point set. Math. Scand.16, 175–180. MR:34, # 3411.Google Scholar
  58. Hansen, S. 1980.On configurations in 3-space without elementary planes and on the number of ordinary planes. Math. Scand.47, 181–194. Zbl 438.51002.Google Scholar
  59. Hansen, S. 1981.Contributions to the Sylvester—Gallai theory. Ph.D. Thesis. Copenhagen.Google Scholar
  60. Herzog, F. andKelly, L. M. 1960.A generalization of the theorem of Sylvester. Proc. Amer. Math. Soc.11, 327–331. MR:22, # 4044.Google Scholar
  61. Kárteszi, F. 1963.Alcuni problemi della geometria d'incindenza. (Conf. Sem. Math. Univ. Bari, No. 88). FM:31, # 3926.Google Scholar
  62. Kelly, L. M. 1986.A resolution of the Sylvester—Gallai problem of J.-P. Serre. Discrete Comput. Geom.1, 101–104.Google Scholar
  63. Kelly, L. M. andMoser, W. 1958.On the number of ordinary lines determined by n points. Canad. J. Math.10, 210–219. MR:20, # 3494.Google Scholar
  64. Kelly, L. M. andRottenberg, R. 1972.Simple points on pseudoline arrangements. Pacific J. Math.40, 617–622. MR:46, # 6150.Google Scholar
  65. Lang, G. D. W. 1955.The dual of a well-known theorem. Math. Gazette39, 314.Google Scholar
  66. Melchior, E. 1940.Über Vielseite der projektiven Ebene. Deutsche Math.5, 461–475. MR:3, p. 13.Google Scholar
  67. Meyer, W. 1974.On ordinary points in arrangements. Israel J. Math.17, 124–135. MR:52, # 148.Google Scholar
  68. Moser, W. 1957.Abstract Groups and Geometrical Configurations. Ph.D. Thesis. Univ. of Toronto.Google Scholar
  69. Moser, W. 1961.An enuneration of the five parallelohedra. Cand. Math. Bull.4, 45–47. MR24a, # 3556.Google Scholar
  70. Motzkin, T. 1951.The lines and planes connecting the points of a finite set. Trans. Amer. Math. Soc.70, 451–464. MR:12, p. 849.Google Scholar
  71. Motzkin, T. 1967.Nonmixed connecting lines. Abstract 67T–605. Notices Amer. Math. Soc.14, 837.Google Scholar
  72. Motzkin, T. 1975.Sets for which no point lies on many connecting lines. J. Combinatorial TheoryA 18, 345–348. MR51, # 2946.CrossRefGoogle Scholar
  73. Rottenberg, R. 1971.On finite sets of points in P 3. Israel J. Math.10, 160–171. MR:45, # 5879.Google Scholar
  74. Rottenberg, R. 1973.Exceptional sets in a projective plane. (Technion Preprint Series, No. MT-169). Technion, Haifa.Google Scholar
  75. Rottenberg, R. 1981.Visibility and parallelotopes in projective space. J. Geometry16, 19–29. MR:83b, 51005. Zbl 473.51012.CrossRefGoogle Scholar
  76. Rottenberg, R. 1982.Singular points in planar finite sets I. Geometriae Dedicata12, 407–415. Zbl 492.05021.CrossRefGoogle Scholar
  77. Sah, Chih-Han. 1986.The rich line problem of P. Erdös. (Colloquia Math. Soc. János Bolyai, Vol. 48. Intuitive Geometry, Siófok, 1985), 123–125.Google Scholar
  78. Salamon, P. andErdös, P. 1988.The solution to a problem of Grünbaum. Canad. Math. Bull.31, 129–138.Google Scholar
  79. Shannon, R. 1974. Ph.D. Thesis. Univ. Washington, Seattle.Google Scholar
  80. Steinberg, R. 1944.Three point collinearity. Amer. Math. Monthly51, 169–171.MathSciNetGoogle Scholar
  81. Sylvester, J. J. 1893.Mathematical Question 11851. Educational Times59, 98.Google Scholar
  82. Szemerédi, E. andTrotter Jr., W. T. 1983a.A combinatorial distinction between the Euclidean and projective plane. European J. Combin.4, 385–394. Zbl 539.05026.Google Scholar
  83. Szemerédi, E. andTrotter Jr., W. T. 1983b.Recent progress on extremal problems in discrete geometry. (Graphs and other combinatorial topics, Prague 1982). (Teubner-Text zur Math. Vol. 59), 316–319. Teubner, Leipzig.Google Scholar
  84. Szemerédi, E. andTrotter Jr., W. T. 1983c.Extremal problems in discrete geometry. Combinatorica3, 381–392. Zbl 541.05012.Google Scholar
  85. Tingley, D. 1975.Monochromatic lines in the plane. Math. Mag.48, 271–274, MR:53, # 9115.Google Scholar
  86. Williams, V. C. 1968.A proof of Sylvester's theorem on collinear points. Amer. Math Monthly.75, 980–982.MathSciNetGoogle Scholar
  87. Watson, K. S. 1981.Sylvester's problem for spreads of curves. Canad. J. Math.32, 219–239, Zbl 436. 51010.Google Scholar
  88. Woodall, D. R. 1969.The λ-μ problem. J. Lond. Math. Soc. (2)1, 509–519.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • P. Borwein
    • 1
  • W. O. J. Moser
    • 1
  1. 1.Department of MathematicsMcGill UniversityMontrealCanada

Personalised recommendations