Advertisement

aequationes mathematicae

, Volume 40, Issue 1, pp 54–66 | Cite as

Galerkin methods for nonlinear Sobolev equations

  • Yanping Lin
Research Papers

Summary

We study Galerkin approximations to the solution of nonlinear Sobolev equations with homogeneous Dirichlet boundary condition in two spatial dimensions and derive optimalL2 error estimates for the continuous Crank — Nicolson and Extrapolated Crank — Nicolson approximations.

AMS (1980) subject classification

Primary 65N15, 65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold, D. N., Douglas, J., Jr. andThomée V.,Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comput.36 (1981) 53–63.Google Scholar
  2. [2]
    Carroll, R. W. andShowalter, R. E.,Singular and Degenerate Cauchy Problems. (Mathematics in Sciences and Engineering, Vol. 127). Academic Press, New York, 1976.Google Scholar
  3. [3]
    Davis, P. L.,A quasilinear parabolic and related third order problem. J. Math. Anal. Appl.49 (1970), 327–335.Google Scholar
  4. [4]
    Douglas, J., Jr. andDupont, T.,Galerkin method for parabolic equations. SIAM J. Numer. Anal.7 (1970), 575–626.CrossRefGoogle Scholar
  5. [5]
    Dupont, T.,Some L 2 error estimates for parabolic Galerkin methods. InThe Mathematical Foundations of the Finite Element Method with Applications to Partial Differential equations (ed.A. K. Aziz). Academic Press, New York—London, 1973, pp. 491–504.Google Scholar
  6. [6]
    Ewing, R. E.,The approximation of certain parabolic equations backward in time by Sobolev equations. SIAM J. Numer. Anal.6 (1975), 283–294.Google Scholar
  7. [7]
    Ewing, R. E.,Numerical solution of Sobolev partial differential equations. SIAM J. Numer. Anal.12 (1975), 345–365.CrossRefGoogle Scholar
  8. [8]
    Ewing, R. E.,Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal.15 (1978), 1125–1150.CrossRefGoogle Scholar
  9. [9]
    Ford, W. H.,Galerkin approximation to nonlinear pseudoparabolic partial differential equations. Aequationes Math.14 (1976), 271–291.CrossRefGoogle Scholar
  10. [10]
    Ford, W. H. andTing, T. W.,Stability and convergence of difference approximations to pseudoparabolic partial differential equations. Math. Comput.27 (1973), 737–743.Google Scholar
  11. [11]
    Ford, W. H. andTing, T. W.,Uniform error estimates for difference approximations to nonlinear pseudoparabolic partial differential equations. SIAM J. Numer. Anal.11 (1974), 115–169.CrossRefGoogle Scholar
  12. [12]
    Nakao, M. T.,Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension. Numer. Math.47 (1985), 139–157.CrossRefGoogle Scholar
  13. [13]
    Thomée, V.,Galerkin Finite Element Methods for Parabolic Problems. (Lecture Notes in Mathematics, Nr. 1054). Springer, Berlin—New York, 1984.Google Scholar
  14. [14]
    Ting, T. W.,A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl.45 (1974), 289–303.CrossRefGoogle Scholar
  15. [15]
    Wahlbin, L.,Error estimates for a Galerkin method for a class of model equations for long waves. Number. Math.23 (1975), 289–303.CrossRefGoogle Scholar
  16. [16]
    Wheeler, M. F.,A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal.10 (1973), 723–759.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Yanping Lin
    • 1
  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations