Advertisement

Marine Biology

, Volume 99, Issue 3, pp 435–444 | Cite as

Flow, flapping, and photosynthesis ofNereocystis leutkeana: a functional comparison of undulate and flat blade morphologies

  • M. A. R. Koehl
  • R. S. Alberte
Article

Abstract

A number of species of macroalagae possess a flat, strap-like blade morphology in habitats exposed to rapidly-moving water whereas those at protected sites have a wider, undulate blade shape. We have explored the functional consequences of flat, narrow vs. wide, undulate blade morphologies in the giant bull kelpNereocystis luetkeana. Our study focused on the behavior of blades in ambient water currents and the consequences of that behavior to breakage and to photosynthesis. In flowing water, the narrow, flat blades flap with lower amplitude and collapse together into a more streamlined bundle than do wide, undulate blades, and hence experience lower drag per blade area at a given flow velocity. If the algae at current-swept sites had ruffled blades, drag forces would sometimes be sufficient to break the stipes. However, flat blades in a streamlined bundle experience more self-shading than do undulate blades, which remain spread out in water currents. Thus, there is a morphological trade-off between reducing drag and reducing self-shading. Photosynthetic14C-HCO3 uptake rates decrease in slow flow when the boundary layer along the blade surface across which diffusion takes place is relatively thick. However, blade flapping, which stirs water near the blade surface, enhances carbon uptake rates in slow water currents for both the undulate and the flat morphologies.

Keywords

Photosynthesis Uptake Rate Drag Force Water Current Slow Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abbott, I. A., Hollenberg, G. J. (1976). Marine algae of California. Stanford University Press, Stanford, CaliforniaGoogle Scholar
  2. Anderson, S. M., Charters, A. C. (1982). A fluid dynamic study of seawater flow throughGelidium nudifrons. Limnol Oceanogr. 27: 399–412Google Scholar
  3. Armstrong, S. L. (1982). Mechanical behavior of two morphs ofHedophyllum sessile (Phaeophyta, Laminariales) from exposed and protected habitats. Amer. Zool. 22: 907Google Scholar
  4. Arnold, K. E., Manley, S. L. (1985). Carbon allocation inMacrocystis pyrifera (Phaeophyta): Intrinsic variability in photosynthesis and respiration. J. Phycol. 21: 154–167Google Scholar
  5. Batchelor, G. K. (1967). An Introduction to Fluid Mechanics. Cambridge University Press, LondonGoogle Scholar
  6. Bidwell, R. G. S., Lloyd, N. D. H., McLachlan, J. (1984). The performance ofChondrus crispus (Irish moss) in laboratory simulation of environments in different locations. Proc. int. Seaweed Symp 11: 292–294Google Scholar
  7. Dennison, W. C., Alberte, R. S. (1982). Photosynthetic responses ofZostrea marina L. (eelgrass) toin situ manipulation of light intensity. Oecologia 55: 137–144Google Scholar
  8. Dennison, W. C., Alberte, R. S. (1985). Role of daily light period in the depth distribution ofZostrea marina (eelgrass). Mar. Ecol. Prog. Ser. 25: 51–61Google Scholar
  9. dePaula, E. J., deOlivera, E. C. (1982). Wave exposure and ecotypical differentiation inSargassum cymosum (Phaeophyta-Fucales). Physiologia 21: 143–153 (1982)Google Scholar
  10. Gerard, V. A. (1982).In situ water motion and nutrient uptake by the giant kelpMacrocystis pyrifera. Mar. Biol. 69: 51–54Google Scholar
  11. Gerard, V. A. (1986). Photosynthetic characteristics of giant kelp (Macrocystis pyrifera) determinedin situ. Mar. Biol. 90: 473–482Google Scholar
  12. Gerard, V. A., Mann, K. H. (1979). Growth and production ofLaminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15: 33–41Google Scholar
  13. Gibbons, J. D. (1976). Nonparametric Methods for Quantitative Analysis. Holt, Rinehart and Winston, New YorkGoogle Scholar
  14. Gust, G. (1977). Turbulence and waves inside flexible-wall systems designed for biological studies. Mar. Biol. 42: 47–53Google Scholar
  15. Hoerner, S. F. (1965). Fluid-Dynamic Drag. S. F. Hoerner, Brick Tuon, New JerseyGoogle Scholar
  16. Jackson, G. A., Winant, C. D. (1983). Effect of a kelp forest on coastal currents. Continental Shelf Res. 2: 75–80Google Scholar
  17. Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyllsa, b, c1, andc2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 191–194Google Scholar
  18. Kain, J. M. (1979). A view of the genusLaminaria. Oceanogr. mar. Biol. A. Rev. 17: 101–161Google Scholar
  19. Kitching, J. A. et al. (1952). The ecology of Lough Ine. XIX. Seasonal changes in the trough. J. Anim. Ecol. 453: 731–758Google Scholar
  20. Koehl, M. A. R. (1977). Effects of sea anemones on the flow forces they encounter. J. exp. Biol. 69: 127–142Google Scholar
  21. Koehl, M. A. R. (1984). How do benthic orgnisms withstand moving water? Am. Zool. 24: 57–70Google Scholar
  22. Koehl, M. A. R. (1986). Seaweeds in moving water: Form and mechanical function. In: Givnish, T. J. (ed.), On the economy of plant form and function. Cambridge University Press, Cambridge, p. 603–634Google Scholar
  23. Koehl, M. A. R., Wainwright, S. A. (1977). Mechanical adaptations of a giant kelp. Limnol. Oceanogr. 22: 1067–1071Google Scholar
  24. Koehl, M. A. R., Wainwright, S. A. (1985). Biomechanics. In: Littler, M. M., Littler, D. S. (eds.), Handbook of Phycological Methods: Macroalgae. Cambridge University Press, Cambridge p. 292–313Google Scholar
  25. LaBarbera, M. (1985). Mechanical properties of a North American aboriginal fishing line: The technology of a natural product. Amer. Anthropol. 87: 625–636Google Scholar
  26. Lüning, K. (1979). Growth strategies of threeLaminaria species (Phaeophycae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar. Ecol. Prog. Ser. 1: 195–204Google Scholar
  27. Monteith, J. L. (1973). Principles of environmental physics. American Elsevier Publishing Co., New YorkGoogle Scholar
  28. Mazella, L., Alberte, R. S. (1986). Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass,Zostera marina L. J. exp. mar. Biol. Ecol. 100: 165–180Google Scholar
  29. Neushul, M. (1972). Functional interpretation of benthic marine algal morphology. In: Abbott, I. A., Kurogi, M. (eds.) Contributions to the systematics of benthis marine algae of the North Pacific. Kobe, Jap. Soc. Phycol., p. 47–74.Google Scholar
  30. Nobel, P. S. (1979). Biophysical plant physiology and ecology. W. H. Freeman, San FranciscoGoogle Scholar
  31. Norton, T. A. (1969). Growth form and environment inSaccorhiza polyschides. J. mar. Biol. Ass. U.K. 49: 1025–1045Google Scholar
  32. Norton, T. A., Matheson, A. C., Neushul, M. (1981). Morphology and environment. In: Lobban, C. S., Wynne, M. J. (eds.) The biology of seaweeds. Bot. Monogr., Vol. 17, University of California Press, Berkeley, CaliforniaGoogle Scholar
  33. Russell, G. (1978). Environment and form in the discrimination of taxa in brown algae. In: Irvine, D. E. G., Price, J. H. (eds.) Modern approaches to the taxonomy of red and brown algae. Syst. Assoc. Spec. Vol. No. 10, New York: Academic Press, New York, p. 339–369Google Scholar
  34. Sokal, R. R., Rohlf, F. J. (1969). Biometry. W. H. Freeman, San FranciscoGoogle Scholar
  35. Smith, R. G., Wheeler, W. N., Srivastava, L. M. (1983). Seasonal photosynthetic performance ofMacrocystic integrifolia (Phaeophyceae). J. Phycol. 19: 352–359Google Scholar
  36. Sundene, O. (1964). The ecology ofLaminaria digitata in Norway in view of transplant experiments. Nytt. Mag. Bot. 11: 83–107Google Scholar
  37. Tidal Current Tables 1982 (1981). Pacific coast of North America and Asia. U. S. Dept. Commerce, Nat. Oceanic and Atmosph. Admin.Google Scholar
  38. Vogel, S. (1981). Life in moving fluids. The physical biology of flow. Princeton, N. J.: Princeton University Press, Princeton, New JerseyGoogle Scholar
  39. Vogel, S., LaBarbera, M. (1978) Simple flow tanks for research and teaching. Bioscience 28: 638–643Google Scholar
  40. Wheeler, W. N. (1980a). Effect of boundary layer transport on the fixation of carbon by the giant kelpMacrocystis pyrifera. Mar. Biol. 56: 103–110Google Scholar
  41. Wheeler, W. N. (1980b) Laboratory and field studies of photosynthesis in the marine crop plantMacrocystis. Proc. Int. Seaweed Symp. 8: 264–272Google Scholar
  42. Wheeler, W. N., Smith, R. G., Srivastava, L. M. (1984). Seasonal photosynthetic performance ofNereocystis luetkeana. Can. J. Bot. 62: 664–670Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. A. R. Koehl
    • 1
  • R. S. Alberte
    • 2
  1. 1.Department of ZoologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoUSA

Personalised recommendations