Marine Biology

, Volume 99, Issue 3, pp 409–414 | Cite as

Predatory behavior ofPhacellophora camtschatica and size-selective predation uponAurelia aurita (Scyphozoa: Cnidaria) in Saanich Inlet, British Columbia

  • S. W. Strand
  • W. M. Hamner


Predation uponAurelia aurita byPhacellophora camtschatica was studied by SCUBA divers in a fjord in British Columbia between July and September 1986. The behavior and size ofP. camtschatica affected their foraging success. Larger predators captured more and larger prey. The size and behavior of the prey also affected the probability of capture. Predators were found at densities which can affect both the size composition and the overall numbers of the prey population.


Prey Population Size Composition Scuba Diver Large Prey Predatory Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alldredge, A. L. (1976). Field behavior and adaptive strategies of appendicularians (Chordata: Tunicata). Mar. Biol. 38: 29–39Google Scholar
  2. Arai, M. N., Hay, D. E. (1982). Predation by medusae on Pacific herring (Clupea harengus pallasi) larvae. Can. J. Fish aquat. Sciences 39: 1537–1540Google Scholar
  3. Arai, M. N., Jacobs, J. R. (1980). Interspecific predation of common Strait of Georgia planktonic coelenterates: laboratory evidence. Can. J. Fish. aquat. Sciences 37: 120–123Google Scholar
  4. Bailey, K. M., Batty, R. S. (1983). A laboratory study of predation byAurelia aurita on larval herring (Clupea harengus): experimental observations compared with model predictions. Mar. Biol. 72: 295–301Google Scholar
  5. Bailey, K. M., Batty, R. S.: (1984). Laboratory study of predation byAurelia aurita on larvae of cod, flounder, plaice and herring: development and vulnerability to capture. Mar. Biol. 83: 287–291Google Scholar
  6. Cody, M. L. (1974). Optimization in ecology. Science, N.Y. 183: 1156–1164Google Scholar
  7. Feigenbaum, D., Kelly, M. (1984). Changes in the lower Chesapeake Bay food chain in presence of the sea nettleChrysaora quinquecirrha (Scyphomedusa). Mar. Ecol. Prog. Ser. 19: 39–47Google Scholar
  8. Fulton, R. S., III, Wear, R. G. (1985). Predatory feeding of the hydromedusaeObelia geniculata andPhialella quadrata. Mar. Biol. 87: 47–54Google Scholar
  9. Gerritsen, J. (1980). Adaptive responses to encounter problems. In: Kerfoot, W. C. (ed.) Evolution and ecology of zooplankton communities. University Press of New England, Hannover, N. H., p. 52–62Google Scholar
  10. Gerritsen, J., Strickler, J. R. (1977). Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Bd Can. 34: 73–82Google Scholar
  11. Gilmer, R. W. (1974). Some aspects of feeding in thecosomatous pteropod molluscs. J. exp. mar. Biol. Ecol. 15: 127–144Google Scholar
  12. Griffiths, D. (1975). Prey availability and the food of predators. Ecology 56: 1209–1214Google Scholar
  13. Hamner, W. M. (1975). Underwater observations of blue-water plankton: logistics, techniques, and safety procedures for divers at sea. Limnol. Oceanogr. 20: 1045–1051Google Scholar
  14. Hamner, W. M. (1985). The importance of ethology for investigations of marine zooplankton. Bull. mar. Sci. 37: 414–424Google Scholar
  15. Hamner, W. M., Hamner, P. P., Strand, S. W., Gilmer, R. W. (1983). Behavior of Antarctic krill,Euphausia superba: chemoreception, feeding, schooling and molting. Science N.Y. 220: 433–435Google Scholar
  16. Hamner, W. M., Strand, S. W., Matsumoto, G. I., Hamner, P. P. (1987). Ethological observations on foraging behavior of the ctenophoreLeucothea n. sp. in the open sea. Limnol. Oceanogr. 32: 645–652Google Scholar
  17. Huntley, M. E., Hobson, L. A. (1978). Medusa predation and plankton dynamics in a temperate fjord, British Columbia. J. Fish. Res. Bd Can. 35: 257–261Google Scholar
  18. Lindahl, O., Hernroth, L. (1983). Phyto-zooplankton community in coastal waters of western Sweden — an ecosystem off balance? Mar. Ecol. Prog. Ser. 10: 119–126Google Scholar
  19. Madin, L. P. (1974). Field observations on the feeding behavior of salps (Tunicata: Thaliacea). Mar. Biol. 25: 143–147Google Scholar
  20. Madin, L. P., Harbison, G. R. (1977). The associations of Amphipoda Hyperiidae with gelatinous zooplankton — I. Associations with Salpidae. Deep-Sea Res. 24: 449–463Google Scholar
  21. Möller, H. (1978). Significance of coelenterates in relation to other planktonic organisms. Meeresforsch. Rep. mar. Res. 27: 1–18. (Ber. dt. wiss. Kommn Meeresforsch.)Google Scholar
  22. Möller, H. (1980). A summer survey of large zooplankton, particularly scyphomedusae, in North Sea and Baltic. Meeresforsch. Rep. mar. Res. 28: 61–68. (Ber. dt. wiss. Kommn Meeresforsch.)Google Scholar
  23. Möller, H. (1984). Reduction of a larval herring population by jellyfish predator. Science, N.Y. 224: 621–622Google Scholar
  24. Parsons, T. R., LeBrasseur, R. J. (1970). The availability of food to different trophic levels in the marine food chain. In: Steele, J. H. (ed.) Marine food chains. University of California Press, Berkeley, p. 325–343Google Scholar
  25. Purcell, J. E. (1980). Influence of siphonophore behavior upon their natural diets: evidence for aggressive mimicry. Science, N.Y. 209: 1045–1047Google Scholar
  26. Purcell, J. E. (1985). Predation on fish eggs and larvae by pelagic cnidarians and ctenophores. Bull. mar. Sci. 37: 737–755Google Scholar
  27. Reeve, M. R. (1980). Comparative experimental studies on the feeding of chaetognaths and ctenophores. J. Plankton Res. 5: 381–393Google Scholar
  28. Shenker, J. M. (1984). Scyphomedusae in surface waters near the Oregon coast, May – August, 1981. Estuar. cstl Shelf Sci. 19: 619–632Google Scholar
  29. Shushkina, E. A., Musayeva, E. I. (1983). The role of jellyfish in the energy system of Black Sea plankton communities. Oceanology, Wash. 23: 92–96Google Scholar
  30. Sullivan, B. K., Reeve, M. R. (1982). Comparison of estimates of the predatory impact of ctenophores by two independent techniques. Mar. Biol. 68: 61–65Google Scholar
  31. Swanberg, N. (1974). The feeding behavior ofBeroe ovata. Mar. Biol. 24: 69–76Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • S. W. Strand
    • 1
  • W. M. Hamner
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations