Marine Biology

, Volume 99, Issue 3, pp 341–352 | Cite as

Food size spectra, ingestion and growth of the copepodAcartia tonsa during development: Implications for determination of copepod production

  • U. Berggreen
  • B. Hansen
  • T. Kiørboe
Article

Abstract

Clearance rates on different sizes of spherically shaped algae were determined in uni-algal experiments for all developmental stages (NII through adult) of the copepodAcartia tonsa, and used to construct food size spectra. Growth and developmental rates were determined at 7 food levels (0 to 1 500 μg C l-1 ofRhodomonas baltica). The lower size limit for particle capture was between 2 and 4 μm for all developmental stages. Optimum particle size and upper size limit increased during development from ∼7 μm and 10 to 14 μm for NII to NIII to 14 to 70 μm and ∼250 μm for adults, respectively. When food size spectra were normalized (percent of maximum clearance in a particular stage versus particle diameter/prosome length) they resembled log-normal distributions with near constant width (variance). Optimum, relative particle sizes corresponded to 2 to 5% of prosome length independent of developmental stage. Since the biomass of particulate matter is approximately constant in equal logarithmic size classes in the sea, food availability may be similar for all developmental stages in the average marine environment. Juvenile specific growth rate was exponential and increased hyperbolically with food concentration. It equaled specific female egg-production rate at all food concentrations. The efficiency by which ingested carbon in excess of maintenance requirements was converted into body carbon was 0.44, very similar to the corresponding efficiency of egg-production in females. On the assumptions that food availability is similar for all developmental stages, and that juvenile and female specific growth/egg-production rates are equal, female egg-production rates are representative of turnover rates (production/biomass) of the entireA. tonsa population and probably in other copepod species as well. Therefore, in situ estimates of female fecundity may be used for a rapid time- and site-specific field estimate of copepod production. This approach is shown to be fairly robust to even large deviations from the assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ayukai, T. (1987). Discriminate feeding of the calanoid copepodAcartia clausi in mixtures of phytoplankton and inert particles. Mar. Biol. 94: 579–587Google Scholar
  2. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F. (1983). The ecological role of water-column microbes in the seas. Mar. Ecol. Prog. Ser. 10: 257–263Google Scholar
  3. Bartram, W. C. (1981). Experimental development of a model for the feeding of neritic copepods on phytoplankton. J. Plankt. Res. 3: 25–51Google Scholar
  4. Boyd, C. M. (1985). Is secondary production in the Gulf of Maine limited by the availability of food? Arch. Hydrobiol. Beih. 21: 57–65Google Scholar
  5. Burkill, P. H., Kendall, T. F. (1982). Production of the copepodEurytemora affinis in the Bristol Channel. Mar. Ecol. Prog Ser. 7: 21–31Google Scholar
  6. Checkley, D. M. Jr. (1980a). The egg production of a marine planktonic copepod in relations to its food supply: laboratory studies. Limnol. Ocenaogr. 25: 420–446Google Scholar
  7. Checkley, D. M. Jr. (1980b). Food limitation of egg production by a marine, planktonic copepod in the sea off southern California. Limnol. Oceanogr. 25: 991–998Google Scholar
  8. Checkley, D. M. Jr. (1985). Nitrogen limitation of zooplankton production and its effect on the marine nitrogen cycle. Arch. Hydrobiol. Beih. 21: 103–113Google Scholar
  9. Corkett, C. J., McLaren, I. A. (1978). The biology ofPseudocalanus. Adv. mar. Biol. 15Google Scholar
  10. Dagg, M. (1978). Estimated,in situ, rates of egg production for the copepodCentropages typicus (Krøyer) in the New York Bight. J. exp. mar. Biol. Ecol. 34: 183–196Google Scholar
  11. Donaghay, P. L., Small, L. F. (1979). Food selection capabilities of the estuarine copepodAcartia clausii. Mar. Biol. 52: 137–146Google Scholar
  12. Durbin, A. G., Durbin, E. G. (1981) Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay, Rhode Island. Estuaries 4: 24–41Google Scholar
  13. Durbin, E. G., Durbin, A. G., Smayda, T. J., Verity, P. G. (1983). Food limitation of production by adultAcartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr. 28: 1199–1213Google Scholar
  14. Fenchel, T. (1982). Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8: 211–223Google Scholar
  15. Fernandez, F. (1979). Nutrition studies in the nauplius larvae ofCalanus pacificus (Copepoda: Calanoidea). Mar. Biol. 53: 131–147Google Scholar
  16. Fransz, H. G., Diel, S. (1985). Secondary production ofCalanus finmarchicus (Copepoda: Calanoidea) in a transitional system of the Fladen Ground area (northern North Sea) during the spring of 1983. In: Proc. 14th Europ. mar. biol. Symp. p. 123–133. [Gibbs, P. E. (ed.) Cambridge University Press, Cambridge]Google Scholar
  17. Frost, B. W. (1972). Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepodCalanus pacificus Limnol. Oceanogr. 17: 805–815Google Scholar
  18. Frost, B. W. (1977). Feeding behaviour ofCalanus pacificus in mixtures of food particles. Limnol. Oceanogr. 22: 472–491Google Scholar
  19. Frost, B. W. (1985). Food limitation of the planktonic marine copepodsCalanus Pacificus andPseudocalanus sp. in a temperate fjord. Arch. Hydrobiol. Beih. 21: 1–13Google Scholar
  20. Frost, B. W., Landry, M. R., Hasset, R. P. (1983). Feeding behaviour of large calanoid copepodsNeocalanus cristatus andN. plumchrus from subarctic Pacific Ocean. Deep-sea Res. 30A: 1–13Google Scholar
  21. Harris, J. R. W. (1983). The development and growth ofCalanus copepodites. Limnol. Oceanogr. 28: 142–147Google Scholar
  22. Harris, R. P., Paffenhöfer, G.-A. (1976). Feeding, growth and reproduction of the marine planktonic copepodTemora longicornis Müller. J. mar. biol. Ass. U.K. 56: 675–690Google Scholar
  23. Huntley, M. (1982). Yellow water in La Jolla Bay, California, July, 1980. II. Suppression of zooplankton grazing. J. exp. mar. Biol. Ecol. 63: 81–91Google Scholar
  24. Huntley, M., Sykes, P., Rohan, S., Marin, V. (1986). Chemicallymediated rejection of dinoflagellate prey by the copepodsCalanus pacificus andParacalanus parvus: mechanisms, occurrence and significance. Mar. Ecol. Prog. Ser. 28: 105–120Google Scholar
  25. Jensen, J. (1987). Fødeindtagelse, ægproduktion og fedtsyresammensætning hos den marine planktoniske copepodAcartia tonsa. Unpublished Masters thesis, Odense University, OdenseGoogle Scholar
  26. Kimmerer, W. J. (1983). Direct measurement of the production: biomass ratio of the subtropical calanoid copepodAcrocalanus inermis. J. Plankt. Res. 5: 1–14Google Scholar
  27. Kimmerer, W. J. (1987). The theory of secondary production calculations for continuously reproducing populations. Limnol. Oceanogr. 32: 1–13Google Scholar
  28. Kimmerer, W. J., McKinnon, A. D. (1987). Growth, mortality, and secondary production of the copepodAcartia tranteri in Westernport Bay, Australia. Limnol. Oceanogr. 32: 14–28Google Scholar
  29. Kiørboe, T., Johansen, K. (1986). Studies of a larval herring (Clupea harengus L.) patch in the Buchan area. IV. Zooplankton distribution and productivity in relation to hydrographic features. Dana 6: 37–51Google Scholar
  30. Kiørboe, T., Munk, P., Richardson, K. (1987). Respiration and growth of larval herringClupea harengus: relation between specific dynamic action and growth efficiency. Mar. Ecol. Prog. Ser. 40: 1–10Google Scholar
  31. Kiørboe, T., Møhlenberg, F., Hamburger, K. (1985). Bioenergetics of the planktonic copepodAcartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser. 26: 85–97Google Scholar
  32. Klein Breteler, W. C. M., Fransz, H. G., Gonzales, S. R. (1982). Growth and development of four calanoid copepod species under experimental and natural conditions. Neth. J. Sea Res. 16: 195–207Google Scholar
  33. Lampert, W. (ed.) (1985). Food limitation and the structure of zooplankton communities. Proceedings of an international symposium held at Plön, W. Germany, July 9–13, 1984. Arch. Hydrobiol. Suppl 21, E. Schweizerbart'sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  34. Landry, M. R. (1978). Population dynamics and production of a planktonic marine copepod,Acartia clausi, in a small temperate lagoon on San Juan Island, Washington. Int. Rev. Ges. Hydrobiol. 63: 77–119Google Scholar
  35. Legendre, L. (1981). Hydrodynamic control of marine phytoplankton production: The paradox of stability. In: Nihoul, J. C. (ed.) Ecohydrodynamics, Elsevier, Amsterdam, p. 191–207Google Scholar
  36. McLaren, I. A. (1986). Is “structural” growth ofCalanus potentially exponential. Limnol. Oceanogr. 31: 1342–1346Google Scholar
  37. McLaren, I. A., Corkett, C. J. (1981). Temperature-dependent growth and production by a marine copepod. Can. J. Fish. aquat. Sci. 38: 77–83Google Scholar
  38. Miller, C. B., Huntley, M. E., Brooks, E. R. (1984). Post-collection molting rates of planktonic, marine copepods: Measurement, application, problems. Limnol. Oceanogr. 29: 1274–1289Google Scholar
  39. Miller, C. B., Johnson, J. K., Heinle, D. R. (1977). Growth rules in the marine copepod genusAcartia. Limnol. Ocenaogr. 22: 326–335Google Scholar
  40. Mullin, M. (1980). Interactions between marine zooplankton and suspended particles. In: Kavanaugh, M. C., Leckie, J. (eds.) Particulates in water. Adv. Chem. Ser. no 189, American Chemical Society, Washington D. C., p. 233–247Google Scholar
  41. Mullin, M. M., Brooks, E. R. (1970). Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food. In: Steele, J. H. (ed.) Marine Food chains. University of California Press, Berkeley, p. 74–95Google Scholar
  42. Paffenhöfer, G.-A. (1976). Feeding, growth, and food conversion of the marine planktonic copepodCalanus helgolandicus. Limnol. Oceanogr. 21: 39–50Google Scholar
  43. Paffenhöfer, G.-A. (1984a). Food ingestion by the marine planktonic copepodParacalanus in relation to abundance and size distribution of food. Mar. Biol. 80: 323–333Google Scholar
  44. Paffenhöfer, G.-A. (1984b). DoesParacalanus feed with a leaky sieve? Limnol. Oceanogr. 29: 155–160Google Scholar
  45. Paffenhöfer, G.-A., Harris, R. P. (1976). Feeding, growth and reproduction of the marine planktonic copepodPseudocalanus elongatus Boeck. J. mar. biol. Ass. U.K. 50: 327–344Google Scholar
  46. Paffenhöfer, G.-A., Van Sant, K. B. (1985). The feeding response of a marine planktonic copepod to quantitiy and quality of particles. Mar. Ecol. Prog. Ser. 27: 55–65Google Scholar
  47. Peterson, W. T. (1986). Development, growth and survivorship of the copepodCalanus marshallae in the laboratory. Mar. Ecol. Prog. Ser. 29: 61–72Google Scholar
  48. Poulet, S. A. (1973). Grazing ofPseudocalanus minutus on naturally occurring particulate matter. Limnol. Oceanogr. 18: 564–573Google Scholar
  49. Poulet, S. A. (1974). Seasonal grazing ofPseudocalanus minutus on particles. Mar. Biol. 25: 109–123Google Scholar
  50. Price, H. J., Paffenhöfer, G.-A. (1984). Effects of food experience in the copepodEucalanus pileatus: a cinematographic study. Mar. Biol. 84: 35–40Google Scholar
  51. Richman, S., Heinle, D. R., Huff, R. (1977). Grazing by adult estuarine calanoid copepods of the Chesapeake Bay. Mar. Biol. 42: 69–84Google Scholar
  52. Rigler, F. H., Downing, J. A. (1984). The calculation of secondary productivity. In: Downing, J. A., Rigler, F. H. (eds.) Manual on methods for the assessment of secondary production in fresh waters, 2nd edn, Blackwell Scientific Publications, Oxford, p. 19–58Google Scholar
  53. Runge, J. A. (1984). Egg production of the marine, planktonic copepodCalanus pacificus Brodsley: Laboratory observations. J. exp. mar. Biol. Ecol. 74: 53–66Google Scholar
  54. Runge, J. A. (1985). Egg production rates ofCalanus finmarchicus in the sea off Nova Scotia. Arch. Hydrobiol. Beih. 21: 33–40Google Scholar
  55. Sekiguchi, H., McLaren, I. A., Corkett, C. J. (1980). Relationship between growth rate and egg production in the copepodAcartia clausi hudsonica. Mar. Biol. 58: 133–138Google Scholar
  56. Sheldon, R. W., Prakash, A., Sutcliffe, W. H., Jr. (1972). The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340Google Scholar
  57. Smetacek, V., Pollehne, F. (1986). Nutrient cycling in pelagic systems: a reappraisal of the conceptual framework. Ophelia 26: 401–428Google Scholar
  58. Støttrup, J. G., Richardson, K., Kirkegaard, E., Pihl, N. J. (1986). The cultivation ofAcartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture 52: 87–96Google Scholar
  59. Tranter, D. J. (1976). Herbivore production. In: Cushing, D. H., Walsh, J. J. (eds.) The ecology of the seas. Blackwell Scientific Publications, Oxford, p. 186–224Google Scholar
  60. Uye, S.-I. (1981). Fecundity studies of neritic calanoid copepodsAcartia clausi Giesbrecht andA. steueri smirnov: a simple empirical model of daily egg production. J. exp. mar. Biol. Ecol. 50: 255–271Google Scholar
  61. Uye, S.-I., Iwai, Y., Kasahara, S. (1983). Growth and production of the inshore marine copepodPseododiaptomus marinus in the central part of the Inland Sea of Japan. Mar. Biol. 73: 91–98Google Scholar
  62. Uye, S.-I., Kasahara, S. (1983). Grazing of various developmental stages ofPseudodiaptomus marinus (Copepoda: Calanoida) on naturally occurring particles. Bull. Plankt. Soc. Japan 30: 147–158Google Scholar
  63. Vanderploeg, H. A., Scaria, D., Liebig, J. R. (1984). Feeding rate ofDiaptomus silicis and its relation to selectivity and effective food concentration in algal mixtures and in Lake Michigan. J. Plankt. Res. 6: 919–941Google Scholar
  64. Vidal, J. (1980). Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate ofCalanus pacificus andPseudocalanus sp. Mar. Biol. 56: 111–134Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • U. Berggreen
    • 1
  • B. Hansen
    • 1
  • T. Kiørboe
    • 1
  1. 1.Charlottenlund CastleDanish Institute for Fisheries and Marine ResearchCharlottenlundDenmark

Personalised recommendations