Journal of Molecular Evolution

, Volume 26, Issue 1–2, pp 74–86 | Cite as

Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes

  • Howard Ochman
  • Allan C. Wilson
Article

Summary

This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach,Salmonella typhimurium andEscherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago.

The median extent of divergence betweenS. typhimurium andE. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7–0.8%/Myr—a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes.

For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence ofS. typhimurium andE. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contranst, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution.

Key words

Ribosomal RNA Divergence dates Nucleotide substitution rates Silent substitutions Amino acid replacements Escherichia Salmonella Mitochondria Chloroplasts Rhizobium Photobacterium Codon usage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler RP (1985) Protein sequencing and taxonomy. In: Jones D, Goodfellow M, Priest FG (eds) Twenty-five years of numerical taxonomy. Academic Press, New York, pp 307–335Google Scholar
  2. Baumann P, Baumann L, Woolkalis MJ, Bang SS (1983) Evolutionary relationships inVibrio andPhotobacterium: a basis for a natural classification. Annu Rev Microbiol 37:369–398CrossRefPubMedGoogle Scholar
  3. Beverley SM, Wilson AC (1984) Molecular evolution inDrosophila and the higher Diptera. II. A time scale for fly evolution. J Mol Evol 21:1–13PubMedGoogle Scholar
  4. Blackman RK, Meselson M (1986) Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of theDrosophila hsp82 gene. J Mol Biol 188:499–515CrossRefPubMedGoogle Scholar
  5. Blumenberg M, Yanofsky C (1982) Evolutionary divergence of theCitrobacter freundii tryptophan operon regulatory region: comparison with other enteric bacteria. J Bacteriol 152:57–62PubMedGoogle Scholar
  6. Bodmer M, Ashburner M (1984) Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species ofDrosophila. Nature 309:425–430PubMedGoogle Scholar
  7. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398PubMedGoogle Scholar
  8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239PubMedGoogle Scholar
  9. Buck JB (1978) Functions and evolution of bioluminescence. In: Herring PJ (ed) Bioluminescence in action. Academic Press, New York, pp 419–460Google Scholar
  10. Busslinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J 1:27–33Google Scholar
  11. Carlin RK (1980) Poly(A): a new evolutionary probe. J Theor Biol 82:353–362CrossRefPubMedGoogle Scholar
  12. Chan Y-L, Gutell R, Noller HF, Wool IG (1984) The nucleotide sequence of a rat 18S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18S ribosomal ribonucleic acid. J Biol Chem 259:224–230PubMedGoogle Scholar
  13. Chang C, Meyerowitz EM (1986) Molecular cloning and DNA sequence of theArabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci USA 83:1408–1412PubMedGoogle Scholar
  14. Chapman DJ, Schopf WJ (1983) Biological and biochemical effects of the development of an aerobic environment. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ pp 302–320Google Scholar
  15. Clarke PH, Lin H-C, Wilcox G (1982) The nucleotide sequence of thearaC regulatory gene inSalmonella typhimurium LT2. Gene 18:157–163CrossRefPubMedGoogle Scholar
  16. Cleary JM, Smith DW, Harding NE, Zyskind JW (1982) Primary structure of the chromosomal origins (oriC) ofEnterobacter aerogenes andKlebsiella pneumoniae: comparisons and evolutionary relationships. J Bacteriol 150:1467–1471PubMedGoogle Scholar
  17. Cloud P (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2:351–387Google Scholar
  18. Cocks GT, Wilson AC (1972) Enzyme evolution in the Enterobacteriaceae. J Bacteriol 110:793–802PubMedGoogle Scholar
  19. Colbert EH (1980) Evolution of the vertebrates: a history of the backboned animals through time, ed 3. John Wiley & Sons, New YorkGoogle Scholar
  20. Connaughton JE, Rairkar A, Lockard RE, Kumar A (1984) Primary structure of rabbit 18S ribosomal RNA determined by direct sequencing. Nucleic Acids Res 12:4731–4745PubMedGoogle Scholar
  21. Cooke EM (1974)Escherichia coli and man. Churchill Livingstone, London.Google Scholar
  22. Corby HDL, Pohill RM, Sprent RI (1983) Taxonomy. In: Broughton WJ (ed) Nitrogen fixation, vol 3. Legumes. Clarendon Press, London, pp 1–35Google Scholar
  23. Crawford IP, Nichols BP, Yanofsky C (1980) Nucleotide sequence of thetrpB gene inEscherichia coli andSalmonella typhimurium. J Mol Biol 142:489–502CrossRefPubMedGoogle Scholar
  24. Crepet WL, Taylor DW (1985) The diversification of the Leguminosae: first fossil evidence of the Mimosoideae and Papilionideae. Science 228:1087–1089Google Scholar
  25. De Wachter R, Huysmans E, Vandenberghe A (1985) 5S ribosomal RNA as a tool for studying evolution. In: Schleifer KH, Stackebrandt E (eds) Evolution of prokaryotes. Academic Press, New York, pp 115–141Google Scholar
  26. Dickerson RE (1971) The structure of cytochromec and the rates of molecular evolution. J Mol Evol 1:26–45CrossRefPubMedGoogle Scholar
  27. Dickerson RE (1980) Cytochrome c and the evolution of energy metabolism. Sci Am 242(3):136–153Google Scholar
  28. Duncan K, Lewendon A, Coggins JR (1984) The complete amino acid sequence ofEscherichia coli 5-enolpyruvylshikimate 3-phosphate synthase. FEBS Lett 170:59–63CrossRefGoogle Scholar
  29. Eckenrode VK, Arnold J, Meagher RB (1985) Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J Mol Evol 21:259–269CrossRefGoogle Scholar
  30. Erdmann VA, Wolters J (1986) Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res 14:r1-r60PubMedGoogle Scholar
  31. Erickson BD, Burton ZF, Watanabe KK, Burgess RR (1985) Nucleotide sequence of therpsU-dnaG-rpoD operon fromSalmonella typhimurium and a comparison of this sequence with the homologous operon ofEscherichia coli. Gene 40:67–78CrossRefPubMedGoogle Scholar
  32. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463PubMedGoogle Scholar
  33. Freudl R, Cole ST (1983) Cloning and characterization of theompA gene fromSalmonella typhimurium. Eur J Biochem 134:497–502CrossRefPubMedGoogle Scholar
  34. George DG, Hunt LT, Yeh L-S, Barker WC (1985) New perspectives on bacterial ferredoxin evolution. J Mol Evol 22:20–31PubMedGoogle Scholar
  35. Gibbons RJ, Kapsimalis B (1967) Estimates of the overall rate of growth of the intestinal microflora of hamsters, guinea pigs, and mice. J Bacteriol 93:510–512PubMedGoogle Scholar
  36. Gillespie JH (1986) Natural selection and the molecular clock. Mol Biol Evol 3:138–155PubMedGoogle Scholar
  37. Guoy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7074PubMedGoogle Scholar
  38. Harland WB (1967) The fossil record. London Geological Society, LondonGoogle Scholar
  39. Hasegawa M, Iida Y, Yano T, Takaiwa F, Iwabuchi M (1985) Phylogenetic relationships among eukaryotic kingdoms in-ferred from ribosomal RNA sequences. J Mol Evol 22:32–38CrossRefPubMedGoogle Scholar
  40. Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer-Verlag, New York, pp 1332–1345Google Scholar
  41. Helm-Bychowski KM, Wilson AC (1986) Rates of nuclear DNA evolution in pheasant-like birds: evidence from restriction maps. Proc Natl Acad Sci USA 83:688–692PubMedGoogle Scholar
  42. Helm-Bychowski KM, Wilson AC (1988) Restriction maps and the temporal calibration of nuclear DNA evolution in phasianoid birds. Proc Int Ornith Congr 19 (in press)Google Scholar
  43. Hennecke H, Kaluza K, Fuhrman M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA inRhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348CrossRefGoogle Scholar
  44. Herring PJ (1977) Luminescence in cephalopods and fishes. Symp Zool Soc Lond 38:127–159Google Scholar
  45. Hofmann HJ, Schopf JW (1983) Early proterozoic microfossils. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ, pp 321–360Google Scholar
  46. Holland HD (1984) The chemical evolution of the atmosphere. John Wiley & Sons, New YorkGoogle Scholar
  47. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215: 1577–1585PubMedGoogle Scholar
  48. Holland HD, Lazar B, McCaffrey M (1986) Evolution of the atmosphere and oceans. Nature 320:27–33CrossRefPubMedGoogle Scholar
  49. Hori H, Osawa S (1978) Evolution of ribosomal proteins inEnterobacteriaceae. J Bacteriol 133:1089–1095PubMedGoogle Scholar
  50. Hori H, Osawa S (1979) Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385PubMedGoogle Scholar
  51. Hori H, Itoh T, Osawa S (1982) The phylogenetic structure of metabacteria. Zentralbl Bakteriol Parasitenkd Infectionskr Hyg Abt 1 Orig Reihe C 3:18–30Google Scholar
  52. Horowitz H, van Arsdell J, Platt T (1983) Nucleotide sequence of thetrpD andtrpC genes ofSalmonella typhimurium. J Mol Biol 169:775–797PubMedGoogle Scholar
  53. Huysmans E, De Wachter R (1986) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 14:r73-r118PubMedGoogle Scholar
  54. Ikemura T (1982) Correlation between the abundance ofEscherichia coli transfer RNAs and the occurrence of the respective codons in its proteins. J Mol Biol 146:1–21CrossRefGoogle Scholar
  55. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–33PubMedGoogle Scholar
  56. Ikemura T, Ozeki H (1983) Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to isoacceptor contents. Cold Spring Harbor Symp Quant Biol 42:1087–1097Google Scholar
  57. Kaplan JB, Nichols BP (1983) Nucleotide sequence ofEscherichia coli pabA and its evolutionary relationship to the trp(G)D. J Mol Biol 168:451–468PubMedGoogle Scholar
  58. Kaplan JB, Goncharoff P, Seibold AM, Nichols BP (1984) Nucleotide sequence of theAcinetobacter calcoaceticus trpGDC gene cluster. Mol Biol Evol 1:456–472PubMedGoogle Scholar
  59. Kaplan JB, Merkel WK, Nichols BP (1985) Evolution of the glutamine amidotransferase genes: nucleotide sequences of thepabA genes fromSalmonella typhimurium, Klebsiella aerogenes andSerratia marcescens. J Mol Biol 183:327–340CrossRefPubMedGoogle Scholar
  60. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, New YorkGoogle Scholar
  61. Kimura M (1986) DNA and the neutral theory. Philos Trans R Soc Lond [Biol] 312:343–354Google Scholar
  62. Kimura M, Ohta T (1973) Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences. Nature New Biol 243:199–200CrossRefPubMedGoogle Scholar
  63. Koop B, Goodman M, Xu P, Chan K, Slightom J (1986) Primate η-globin DNA sequences and man's place among the great apes. Nature 319:234–238CrossRefPubMedGoogle Scholar
  64. Knoll A (1985a) The distribution and evolution of microbial life in the late Proterozoic era. Annu Rev Microbiol 39:391–417CrossRefPubMedGoogle Scholar
  65. Knoll A (1985b) Patterns of evolution in Archean and Proterozoic eons. Paleobiology 11:53–64Google Scholar
  66. Krikos A, Mutoh N, Boyd A, Simon MI (1983) Sensory transducers ofE. coli are composed of discrete structural and functional domains. Cell 33:615–622CrossRefPubMedGoogle Scholar
  67. Küntzel H, Piechulla B, Hahn U (1983) Consensus structure and evolution of 5S rRNA. Nucleic Acids Res 11:893–900PubMedGoogle Scholar
  68. Lake JA, Clark MW, Henderson E, Fay SP, Oakes M, Scheinman A, Thornber JP, Mah RA (1985) Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci USA 82:3716–3720PubMedGoogle Scholar
  69. Li W-H, Luo C-C, Wu C-I (1985a) Evolution of DNA sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 1–94Google Scholar
  70. Li W-H, Wu C-I, Luo C-C (1985b) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174PubMedGoogle Scholar
  71. Lim G, Burton JC (1983) Nodulation status of the Leguminosae. In: Broughton WJ (ed) Nitrogen fixation, vol. 2.Rhizobium. Clarendon, London, pp 1–34Google Scholar
  72. Lopes JM, Lawther RP (1986) Analysis and comparison of the internal promoter, pE, of theilvGMEDA operons fromEscherichia coli K-12 andSalmonella typhimurium. Nucleic Acids Res 14:2779–2798PubMedGoogle Scholar
  73. McElroy WD, Seliger H (1962) Origin and evolution of bioluminescence. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 91–101Google Scholar
  74. Meyer TE, Cusanovich MA, Kamen MD (1986) Evidence against the use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc Natl Acad Sci USA 83:217–220PubMedGoogle Scholar
  75. Milkman R, Crawford IP (1983) Clustered third-base substitutions among wild strains ofEscherichia coli. Science 221: 378–380PubMedGoogle Scholar
  76. Mutoh N, Simon ML (1986) Nucleotide sequence corresponding to five chemotaxis genes inEscherichia coli. J Bacteriol 165:161–166PubMedGoogle Scholar
  77. Nei M (1975) Molecular population genetics and evolution. North-Holland, AmsterdamGoogle Scholar
  78. Nei M (1976) The cost of natural selection and the extent of protein polymorphism. Trends Biochem Sci 1:N247–248Google Scholar
  79. Nei M, Graur D (1984) Extent of protein polymorphism and the neutral mutation theory. Evol Biol 17:73–118Google Scholar
  80. Neuhard J, Stauning E, Kelin RA (1985) Cloning and characterization of thepyrE gene and ofPyrE::Mud1 (Ap® lac) fusions fromSalmonella typhimurium. Eur J Biochem 146: 597–603CrossRefPubMedGoogle Scholar
  81. Nichols BP, Yanofsky C (1979) Nucleotide sequences oftrpA ofSalmonella typhimurium andEscherichia coli: an evolutionary comparison. Proc Natl Acad Sci USA 76:5244–5248Google Scholar
  82. Nichols BP, Miozzari GF, VanCleemput M, Bennett GN, Yanofsky C (1980) Nucleotide sequences of thetrpG regions ofEscherichia coli, Shigella dysenteriae, Salmonella typhimurium andSerratia marcescens. J Mol Biol 142:503–517CrossRefPubMedGoogle Scholar
  83. Nichols BP, Blumenberg M, Yanofsky C (1981) Comparison of the nucleotide sequence oftrpA and sequences immediately beyond thetrp operon inKlebsiella aerogenes, Salmonella typhimurium andEscherichia coli. Nucleic Acids Res 9:1743–1755PubMedGoogle Scholar
  84. Ochman H, Wilson AC (1987) Evolutionary history of enteric bacteria. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium: cellular and molecular biology, vol 2. ASM Publications, Washington DC, pp 1649–1654Google Scholar
  85. Ochman H, Whittam TS, Caugant DA, Selander RK (1983) Enzyme polymorphism and genetic population structure inEscherichia coli andShigella. J Gen Microbiol 129:2715–2726PubMedGoogle Scholar
  86. Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566CrossRefPubMedGoogle Scholar
  87. Powell JR, Caccone A, Amato GD, Yoon C (1986) Rates of nucleotide substitution inDrosophila mitochondrial DNA and nuclear DNA are similar. Proc Natl Acad Sci USA 83:9090–9093PubMedGoogle Scholar
  88. Raynal F, Michot B, Bachellerie J-P (1984) Complete nucleotide sequence of mouse 18S rRNA gene: comparison with other available homologs. FEBS Lett 167:263–268CrossRefPubMedGoogle Scholar
  89. Rhoads DC, Morse JW (1971) Evolutionary and ecological significance of oxygen deficient marine basins. Lethaia 4:413–428Google Scholar
  90. Rocha V, Crawford IP, Mills SE (1972) Comparative immunological and enzymatic study of the tryptophan synthetaseβ 2 subunit in theEnterobacteriaceae. J Bacteriol 111:163–168PubMedGoogle Scholar
  91. Romer AS (1966) Vertebrate paleontology. University of Chicago Press, ChicagoGoogle Scholar
  92. Runnegar B (1982) The Cambrian explosion: animals or fossils? J Geol Soc Aust 29:395–411Google Scholar
  93. Russo AF, Koshland DE Jr (1983) Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science 220:1016–1020PubMedGoogle Scholar
  94. Saint-Girons I, Duchange N, Cohen GN, Zakin MM (1984) Structure and regulation of themetJ regulatory gene inEscherichia coli. J Biol Chem 259:14282–14285PubMedGoogle Scholar
  95. Sarich VM (1977) Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 165:24–28CrossRefGoogle Scholar
  96. Savageau MA (1983)Escherichia coli habitats, cell types, and mechanisms of gene control. Am Nat 122:732–744CrossRefGoogle Scholar
  97. Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ, pp 214–239Google Scholar
  98. Schopf JW, Hayes JM, Walter MR (1983) Evolution of earth's earliest ecosystems: recent progress and unsolved problems. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ, pp 361–384Google Scholar
  99. Schwartz RM, Dayhoff MO (1978a) Origin of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403PubMedGoogle Scholar
  100. Schwartz RM, Dayhoff MO (1978b) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. Natl Biomed Res Found, Washington DC, pp 29–44Google Scholar
  101. Selander RK, Caugant DA, Whittam TS (1987) Genetic structure and variation in natural populations ofEscherichia coli. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium: cellular and molecular biology, vol 2. ASM Publications, Washington DC, pp 1625–1648Google Scholar
  102. Sharp P, Li W-H (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230PubMedGoogle Scholar
  103. Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387PubMedGoogle Scholar
  104. Spencer DF, Schnare MN, Gray MW (1984) Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria andEscherichia coli. Proc Natl Acad Sci USA 81:493–497PubMedGoogle Scholar
  105. Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. Symp Soc Gen Microbiol 32:1–31Google Scholar
  106. Stackebrandt E, Ludwig W, Fox GE (1985) 16S ribosomal RNA oligonucleotide catalogues. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic Press, New York, pp 75–108Google Scholar
  107. Stalker DM, Hiatt WR, Comai L (1985) A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem 260:4724–4728PubMedGoogle Scholar
  108. Stock (Maderis) AM (1986) Bacterial chemotaxis:che genes and their products. PhD thesis, University of California, BerkeleyGoogle Scholar
  109. Stock A, Koshland DE Jr, Stock J (1985) Homologies between theSalmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc Natl Acad Sci USA 82:7989–7993PubMedGoogle Scholar
  110. Takaiwa F, Oono K, Sugiura M (1984) The complete nucleotide sequence of a rice 17S rRNA gene. Nucleic Acids Res 12: 5441–5448PubMedGoogle Scholar
  111. Urbanowski ML, Stauffer GV (1985) Nucleotide sequence and biochemical characterization of themetJ gene fromSalmonella typhimurium LT2. Nucleic Acids Res 13:673–685PubMedGoogle Scholar
  112. Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196PubMedGoogle Scholar
  113. Walker JCG (1974) Evolution of the atmosphere. Macmillan, New YorkGoogle Scholar
  114. Weisburg WG, Oyaizu Y, Oyaizu H, Woese CR (1985a) Natural relationship between bacteroides and flavobacteria. J Bacteriol 164:230–236PubMedGoogle Scholar
  115. Weisburg WG, Woese CR, Dobson ME, Weiss ME (1985b) A common origin of rickettsiae and certain plant pathogens. Science 230:556–558PubMedGoogle Scholar
  116. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639CrossRefPubMedGoogle Scholar
  117. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400Google Scholar
  118. Woese CR (1982) Archaebacteria and cellular origins: an overview. Zentralbl Bakteriol Parasitenkd Infectionskr Hyg Abt 1 Orig Reihe C 3:1–17Google Scholar
  119. Woese CR, Stackebrandt E, Macke T, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151PubMedGoogle Scholar
  120. Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745PubMedGoogle Scholar
  121. Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447PubMedGoogle Scholar
  122. Yanofsky C, VanCleemput M (1982) Nucleotide sequence oftrpE ofSalmonella typhimurium and its homology with the corresponding sequence ofEscherichia coli. J Mol Biol 155: 235–246CrossRefPubMedGoogle Scholar
  123. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366PubMedGoogle Scholar
  124. Zyskind JW, Cleary JM, Brusilow WSA, Harding NE, Smith DW (1983) Chromosomal replication origin from the marine bacteriumVibrio harveyi functions inEschericheria coli: oriC consensus sequence. Proc Natl Acad Sci USA 80:1164–1168PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Howard Ochman
    • 1
  • Allan C. Wilson
    • 1
    • 2
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute of Animal GeneticsUniversity of EdinburghEdinburghScotland UK

Personalised recommendations