Journal of Molecular Evolution

, Volume 24, Issue 3, pp 228–235 | Cite as

Interrelatedness of 5S RNA sequences investigated by correspondence analysis

  • Carmen A. Mannella
  • Joachim Frank
  • Nicholas Delihas
Article

Summary

Correspondence analysis (a form of multivariate statistics) applied to 74 5S ribosomal RNA sequences indicates that the sequences are interrelated in a systematic, nonrandom fashion. Aligned sequences are represented as vectors in a 5N-dimensional space, where N is the number of base positions in the 5S RNA molecule. Mutually orthogonal directions (called factor axes) along which intersequence variance is greatest are defined in this hyperspace. Projection of the sequences onto planes defined by these factorial directions reveals clustering of species that is suggestive of phylogenetic relationships. For each factorial direction, correspondence analysis points to regions of “importance”, i.e., those base positions at which the systematic changes occur that define that particular direction. In effect, the technique provides a rapid determination of group-specific signatures. In several instances, similarities between sequences are indicated that have only recently been inferred from visual base-to-base comparisons. These results suggest that correspondence analysis may provide a valuable starting point from which to uncover the patterns of change underlying the evolution of a macromolecule, such as 5S RNA.

Key words

5S RNA Correspondence analysis Multivariate statistics Evolution Phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzecri JP (1969) Statistical analysis as a tool to make patterns emerge from data. In: Watanabe S (ed) Methodologies of pattern recognition. Academic Press, New York, p 35Google Scholar
  2. Bretaudiere J-P, Dumont G, Rej R, Bailly M (1981) Suitability of control materials. General principles and methods of investigation. Clin Chem 27:798–805PubMedGoogle Scholar
  3. Dayhoff MO (1976) The origin and evolution of protein superfamilies. Fed Proc 35:2132–2138PubMedGoogle Scholar
  4. Delihas N, Andersen J (1982) Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res 10:7323–7344PubMedGoogle Scholar
  5. Delihas N, Andersen J, Singhal RP (1984) Structure, function and evolution of 5S ribosomal RNAs. Prog Nucleic Acid Res Mol Biol 31:161–190PubMedGoogle Scholar
  6. Delihas N, Andersen J, Berns D (1985) The structure of the 5S ribosomal RNA from the thermophilic cyanobacteriumSynechococcus lividus II. J Mol Evol 21:334–337Google Scholar
  7. Erdmann UA, Wolters J, Huysmans E, DeWachter R (1985) Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res 13:r105–163PubMedGoogle Scholar
  8. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:269–284Google Scholar
  9. Fox GE, Stackebrandt E, Hespell RB, Gison J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zalben LB, Blakemore R, Gupta R, Bonnen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463PubMedGoogle Scholar
  10. Fox GE, Luehrsen KR, Woese CR (1982) Archaebacterial 5S ribosomal RNA. Zentralbl Bakteriol Hyg I [C] 3:330–345Google Scholar
  11. Frank J, van Heel M (1982) Correspondence analysis of aligned images of biological particles. J Mol Biol 161:124–137Google Scholar
  12. Hori H (1975) Evolution of 5S RNA. J Mol Evol 7:75–86PubMedGoogle Scholar
  13. Hori H, Osawa S (1979) Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385PubMedGoogle Scholar
  14. Karabin GD, Narita JO, Dodd JR, Hallick RB (1983)Euglena gracilis chloroplast ribosomal RNA transcription units. J Biol Chem 258:14790–14796PubMedGoogle Scholar
  15. Kumazaki T, Hori H, Osawa S (1983) Phylogeny of protozoa deduced from 5S rRNA sequences. J Mol Evol 19:411–419PubMedGoogle Scholar
  16. Lebart L, Morineau A, Warwick KA (1984) Multivariate descriptive statistical analysis. John Wiley & Sons, New YorkGoogle Scholar
  17. Limaiem J, Henaut A (1984) Etude de la fluctuation de la frequence des quatre bases le long du genome mitochondrial des Mammiferes au moyen de l'analyse factorielle des correspondances. C R Seances Acad Sci 298:279–286Google Scholar
  18. MacKay RM, Salgado D, Bonen L, Stackebrandt E, Doolittle WF (1982) The 5S ribosomal RNAs ofParacoccus denitrificans andProchloron. Nucleic Acids Res 10:2963–2970PubMedGoogle Scholar
  19. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, ConnecticutGoogle Scholar
  20. Radermacher M, Frank J (1985) Use of nonlinear mapping in multivariate image analysis of molecule projections. Ultramicroscopy 17:117–126PubMedGoogle Scholar
  21. Rogers MJ, Simmons J, Walker RT, Weisburg WG, Woese CR, Tanner RS, Robinson IM, Stahl DA, Olsen G, Leach RH, Maniloff J (1985) Construction of the mycoplasma evolutionary tree from 5SrRNA sequence data. Proc Natl Acad Sci USA 82:1160–1164PubMedGoogle Scholar
  22. Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria and chloroplasts. Science 199:395–403PubMedGoogle Scholar
  23. Sjostrom M, Wold S (1985) A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids. J Mol Evol 22:272–277PubMedGoogle Scholar
  24. van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194PubMedGoogle Scholar
  25. Villanueva E, Luehrsen KR, Gibson J, Delihas N, Fox GE (1985) Localization and the phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences. J Mol Evol 22:46–52PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Carmen A. Mannella
    • 1
  • Joachim Frank
    • 1
  • Nicholas Delihas
    • 2
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA
  2. 2.Department of Microbiology, School of MedicineState University of New York at Stony BrookStony BrookUSA

Personalised recommendations