Journal of Molecular Evolution

, Volume 24, Issue 3, pp 218–227 | Cite as

Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus)

  • Håkan Tegelström
Article

Summary

Using a silver staining method to detect DNA fragments produced by restriction enzymes, it was possible to compare mitochondrial DNAs (mtDNAs) from 85 individuals of the bank vole (Clethrionomys glareolus) trapped at 25 localities in Fennoscandia. There are two distinctly different mtDNA lineages, one occurring in southern and central Fennoscandia and the other in the northern parts. A fragment comparison method shows about 12.7% nucleotide sequence divergence between these two lineages. This major difference between animals of the same species could theoretically be explained by intraspecific lineage survivorship independent of species hybridization, or by introduction of an atypical mtDNA via hybridization with a closely related species. Analysis of mtDNAs from the two otherClethrionomys species present in Fennoscandia (C. rutilus andC. rufocanus) shows that the mtDNA of northernC. glareolus is very similar to that ofC. rutilus and that the mtDNA lineages of these two species cluster together in a phenogram, with small genetic distances among them. By contrast, electrophoresis of proteins encoded by 17 nuclear loci reveals fixed allelic differences between these two species at 8 loci. Hence the presence of two distinctly different mtDNA lineages withinC. glareolus may be a consequence of a limited episode of hybridization betweenC. glareolus andC. rutilus, probably during the postglacial recolonization of Fennoscandia 8000–13,000 years ago.

Key words

Restriction-fragment analysis Silver staining Protein electrophoresis Population genetics Interspecific transfer of DNA Historical biogeography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allendorf FW, Mitchell N, Ryman N, Ståhl G (1977) Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. Hereditas 86:179–190PubMedGoogle Scholar
  2. Avise JC, Lansman RA, Shade RA (1979) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genusPeromyscus. Genetics 92:279–295PubMedGoogle Scholar
  3. Avise JC, Shapira JF, Daniel SW, Aquadro CF, Lansman RA (1983) Mitochondrial DNA differentiation during the speciation process inPeromyscus. Mol Biol Evol 1:38–56Google Scholar
  4. Ayala FJ (1975) Genetic differentiation during the speciation process. Evol Biol 8:1–78Google Scholar
  5. Barton N, Jones JS (1983) Mitochondrial DNA: new clues about evolution. Nature 306:317–318PubMedGoogle Scholar
  6. Baverstock PR, Watts CHS, Cole SR (1977) Electrophoretic comparisons between allopatric populations of five Australian pseudomyine rodents (Muridae). Aust J Biol Sci 30:471–485Google Scholar
  7. Baverstock PR, Adams M, Maxson LR, Yosida TH (1983) Genetic differentiation among karyotypic forms of the black rat,Rattus rattus. Genetics 105:969–983Google Scholar
  8. Berg WJ, Ferris SD (1984) Restriction endonuclease analysis of salmonid mitochondrial DNA. Can J Fish Aquat Sci 41:1041–1047Google Scholar
  9. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971PubMedGoogle Scholar
  10. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239PubMedGoogle Scholar
  11. Clayton JW, Tretiak DN (1972) Amine-citrate buffers for pH control in starch gel electrophoresis. J Fish Res Bd Can 29:1169–1172Google Scholar
  12. Coyne JA (1985) The genetic basis of Haldane's rule. Nature 314:736–738PubMedGoogle Scholar
  13. Ferris SD, Sage RD, Huang C-M, Nielsen JT, Ritte U, Wilson AC (1983) Flow of mitochondrial DNA across a species boundary. Proc Natl Acad Sci USA 80:2290–2294PubMedGoogle Scholar
  14. Grant PR (1974) Reproductive compatibility of voles from separate continents (Mammalia:Clethrionomys). J Zool London 174:245–254Google Scholar
  15. Guillemette JG, Lewis PNL (1983) Detection of subnanogram quantities of DNA and RNA on native and denaturing polyacrylamide and agarose gels by silver staining. Electrophoresis 4:92–94Google Scholar
  16. Gyllensten U, Wharton D, Wilson AC (1985) Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. J Hered 76:321–324PubMedGoogle Scholar
  17. Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109Google Scholar
  18. Hale LR, Beckenbach AT (1985) Mitochondrial DNA variation inDrosophila pseudoobscura and related species in Pacific Northwest populations. Can J Genet Cytol 27:357–364PubMedGoogle Scholar
  19. Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North-Holland, AmsterdamGoogle Scholar
  20. Hasegawa M, Kishino H, Taka-aki Y (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedGoogle Scholar
  21. Kessler LG, Avise JC (1984) Systematic relationships among waterfowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA. Syst Zool 33:370–380Google Scholar
  22. Kessler LG, Avise JC (1985) A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. Mol Biol Evol 2:109–125PubMedGoogle Scholar
  23. Lansman RA, Shade RO, Shapira JF, Avise JC (1981) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol 17:214–226PubMedGoogle Scholar
  24. Lansman RA, Avise JC, Huettel MD (1983a) Critical experimental test of the possibility of “paternal leakage” of mitochondrial DNA. Proc Natl Acad Sci USA 80:1969–1971PubMedGoogle Scholar
  25. Lansman RA, Avise JC, Aquadro CF, Shapira JF, Daniel SW (1983b) Extensive genetic variation in mitochondrial DNA's among geographic populations of the deer mouse,Peromyscus maniculatus. Evolution 37:1–16Google Scholar
  26. Matthey R (1953) Les chromosomes des Muridae. Révision critique et matériaux nouveaux pour servir á l'histoire de l'évolution chromosomique chez ces rongeurs. Rev Suisse Zool 60:225–283Google Scholar
  27. Nadler CF, Rausch VR, Lyapunova EA, Hoffmann RS, Vorontsov NN (1976) Chromosomal banding patterns of the Holarctic rodents,Clethrionomys rutilus andMicrotus oeconomus. Z Säugetierkunde 41:137–146Google Scholar
  28. Nei M (1975) Molecular population genetics and evolution. North-Holland, AmsterdamGoogle Scholar
  29. Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedGoogle Scholar
  30. Palmer JD, Shields DR, Cohen DB (1983) Chloroplast DNA evolution and the origin of amphidiploidBrassica species. Theor Appl Genet 65:181–189Google Scholar
  31. Powell JR (1983) Interspecific cytoplasmatic gene flow in the absence of nuclear gene flow: evidence fromDrosophila. Proc Natl Acad Sci USA 80:492–495PubMedGoogle Scholar
  32. Rauschert K (1963) Sexuelle Affinität zwischen Arten and Unterarten von Rötelmäusen (Clethrionomys). Biol Zentralbl 82:653–664Google Scholar
  33. Ridgway GJ, Sherburne SW, Lewis RD (1970) Polymorphism in the esterases of Atlantic herring. Trans Am Fish Soc 99:147–151Google Scholar
  34. Sarich VM (1977) Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 265:24–28PubMedGoogle Scholar
  35. Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San FranciscoGoogle Scholar
  36. Spannhof L (1959) Histochemische Untersuchungen zur Sterilität bei männlichen Säugerbastarden (Artkreuzung der RötelmäuseClethrionomys glareolus×Cl. rutilus). Verh Dtsch Zool Des Zoll Anz Suppl 23:99–107Google Scholar
  37. Spolsky C, Uzzell T (1984) Natural interspecies transfer of mitochondrial DNA in amphibians. Proc Natl Acad Sci USA 81:5802–5805PubMedGoogle Scholar
  38. Takahata N (1985) Introgression of extranuclear genomes in finite populations: nucleo-cytoplasmatic incompatibility. Genet Res 45:179–194PubMedGoogle Scholar
  39. Weissinger AK, Timothy DH, Levings CS III, Goodman MM (1983) Patterns of mitochondrial DNA variation in indigenous maize races of Latin America. Genetics 104:365–379Google Scholar
  40. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linnean Soc 26:375–400Google Scholar
  41. Zimmerman K (1965) Art-Hybriden bei Rötelmäusen. Z Säugetierkunde 30:315–320Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Håkan Tegelström
    • 1
  1. 1.Department of GeneticsUniversity of UppsalaUppsalaSweden

Personalised recommendations