Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 6, pp 531–540 | Cite as

Effectors of the mammalian plasma membrane NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators

  • FranÇois Vaillant
  • Jari A. Larm
  • Gabrielle L. McMullen
  • Ernst J. Wolvetang
  • Alfons Lawen
Research Articles

Abstract

In the presence of effectors variations in the two recognized activities of the plasma membrane NADH-oxidoreductase system were studied in separate, specificin vitro assays. We report here that ubiquinone analogues that contain a short, less hydrophobic side chain than coenzyme Q-10 dramatically stimulate the NADH-oxidase activity of isolated rat liver plasma membranes whereas they show no effect on the reductase activity of isolated membranes. If measured in assays of the NADH∶ferricyanide reductase of living cultured cells these compounds have only a limited effect; the oxidase activity of whole cells is not measurable in our hands. We have furthermore identified selective inhibitors of both enzyme activities. In particular, the NADH-oxidase activity can be significantly inhibited by structural analogues of ubiquinone, such as capsaicin and resiniferatoxin. The NADH∶ferricyanide reductase, on the other hand, is particularly sensitive to pCMBS, indicating the presence of a sulfhydryl group or groups at its active site. The identification of these specific effectors of the different enzyme activities of the PMOR yields further insights into the function of this system.

Key words

Plasma membrane NADH-oxidoreductase NADH-oxidase NADH∶ferricyanide reductase ubiquinone analogues ρ0 cells 

Abbreviations used

DCIP

2,6-dichlorophenol-indophenol

DTNB

5,5′-dithio-bis(2-nitrobenzoic acid)

FAC

ferric ammonium citrate

pCMBS

p-chloromercuriphenylsulfonic acid

PMOR

plasma membrane NADH-oxidoreductase

coenzyme Q-0

2,3-dimethoxy-5-methyl-1,4-benzoquinone

SH

sulfhydryl group

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanas'ev, I. B., Korkina, L. G., Suslova, T. B., and Soodaeva, S. K. (1990).Arch. Biochem. Biophys. 281, 245–250.PubMedGoogle Scholar
  2. Aledort, L. M., Troup, S. B., and Weed, R. I. (1968).Blood 31, 471–479.PubMedGoogle Scholar
  3. Beaufay, H., Amar-Costesec, A., Feytmans, E., Thinès-Sempoux, D., Wibo, M., Robbi, M., and Berthet, J. (1974).J. Cell Biol. 61, 188–200.Google Scholar
  4. Bérczi, A., Sizensky, J. A., Crane, F. L., and Faulk, W. P. (1991).Biochim. Biophys. Acta 1073, 562–570.PubMedGoogle Scholar
  5. Bradford, M. M. (1976).Anal. Biochem. 72, 248–254.PubMedGoogle Scholar
  6. Brandt, U., and Trumpower, B. (1994).Crit. Rev. Biochem. Mol. Biol. 29, 165–197.PubMedGoogle Scholar
  7. Braun, B. S., Benbow, U., Lloyd-Williams, P., Bruce, J. M., and Dutton, P. L. (1986).Methods Enzymol. 125, 119–129.PubMedGoogle Scholar
  8. Brightman, A. O., Wang, J., Miu, R. K.-m., Sun, I. L., Barr, R., Crane, F. L., and Morré, D. J. (1992).Biochim. Biophys. Acta 1105, 109–117.PubMedGoogle Scholar
  9. Clark, M. G., Partick, E. J., Patten, G. S., Crane, F. L., Löw, H., and Grebing, C. (1981).Biochem. J. 200, 565–572.PubMedGoogle Scholar
  10. Crane, F. L., Roberts, H., Linnane, A. W., and Löw, H. (1982).J. Bioenerg. Biomembr. 14, 191–205.PubMedGoogle Scholar
  11. Crane, F. L., Sun, I. L., Clark, M. G., Grebing, C., and Löw, H. (1985).Biochim. Biophys. Acta 811, 233–264.PubMedGoogle Scholar
  12. Crane, F. L., Sun, I. L., Barr, R., and Löw, H. (1991).J. Bioenerg. Biomembr. 23, 773–803.PubMedGoogle Scholar
  13. Crane, F. L., Sun, I. L., and Sun, E. E. (1993).Clin. Invest. 71, S55-S59.Google Scholar
  14. Desjardins, P., Frost, E., and Morais, R. (1985).Mol. Cell. Biol. 5, 1163–1169.PubMedGoogle Scholar
  15. Ellem, K. A. O., and Kay, G. F. (1983).Biochem. Biophys. Res. Commun. 112, 183–190.PubMedGoogle Scholar
  16. Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 254, 2491–2498.PubMedGoogle Scholar
  17. Hochstein, P. (1983).Fundam. Appl. Toxicol. 3, 215–217.PubMedGoogle Scholar
  18. Inman, R. S., and Wessling-Resnick, M. (1993).J. Biol. Chem. 268, 8521–8528.PubMedGoogle Scholar
  19. King, M. P., and Attardi, G. (1989).Science 246, 500–503.PubMedGoogle Scholar
  20. Larm, J. A., Vaillant, F., Linnane, A. W., and Lawen, A. (1994).J. Biol. Chem. 269, 30097–30100.PubMedGoogle Scholar
  21. Larm, J. A., Wolvetang, E. J., Vaillant, F., Martinus, R. D., Lawen, A., and Linnane, A. W. (1995).Protoplasma 184, 173–180.Google Scholar
  22. Lawen, A., Martinus, R. D., McMullen, G. L., Nagley, P., Vaillant, F., Wolvetang, E. J., and Linnane, A. W. (1994).Mol. Aspects Med. 15, s13-s27.PubMedGoogle Scholar
  23. Lenaz, G., Pasquali, P., Bertoli, E., and Parenti-Castelli, G. (1975).Arch. Biochem. Biophys. 169, 217–226.PubMedGoogle Scholar
  24. Löw, H., Grebing, C., Lindgren, A., Tally, M., Sun, I. L., and Crane, F. L. (1987).J. Bioenerg. Biomembr. 19, 535–549.PubMedGoogle Scholar
  25. Luft, R. (1994).Proc. Natl. Acad. Sci. USA 91, 8731–8738.PubMedGoogle Scholar
  26. Mahler, H. R. (1955).Methods Enzymol. 2, 688–693.Google Scholar
  27. Martinus, R. D., Linnane, A. W., and Nagley, P. (1993).Biochem. Mol. Biol. Int. 31, 997–1005.PubMedGoogle Scholar
  28. Morré, D. J., and Brightman, A. O. (1991).J. Bioenerg. Biomembr. 23, 469–489.PubMedGoogle Scholar
  29. Morré, D. J., and Morré, D. M. (1989).BioTechniques 7, 946–958.PubMedGoogle Scholar
  30. Nagley, P., Zhang, C., Martinus, R. D., Vaillant, F., and Linnane, A. W. (1993). InMitochondrial DNA in Human Pathology (DiMauro, S., and Wallace, D. C., eds.), Raven Press, New York, pp. 137–157.Google Scholar
  31. Naruta, Y. (1980).J. Am. Chem. Soc. 102, 3774–3783.Google Scholar
  32. Navas, P., Estévez, A., Burón, M. I., Villalba, J. M., and Crane, F. L. (1988).Biochem. Biophys. Res. Commun. 154, 1029–1033.PubMedGoogle Scholar
  33. Navas, P., Nowack, D. D., and Morré, D. J. (1989).Cancer Res. 49, 2147–2156.PubMedGoogle Scholar
  34. Nishinaka, Y., Aramaki, Y., Yoshida, H., Masuya, H., Sugawara, T., and Ichimori, Y. (1993).Biochem. Biophys. Res. Commun. 193, 554–559.PubMedGoogle Scholar
  35. Nyormoi, O., Klein, G., Adams, A., and Dombos, L. (1973).Int. J. Cancer 12, 396–408.PubMedGoogle Scholar
  36. Sottocasa, G. L., Kuylenstierna, B., Ernster, L., and Bergstrand, A. (1967).J. Cell Biol. 32, 415–438.PubMedGoogle Scholar
  37. Sun, I. L., Toole-Simms, W., Crane, F. L., Golub, E. S., Díaz de Pagán, T., Morré, D. J., and Löw, H. (1987).Biochem. Biophys. Res. Commun. 146, 976–982.PubMedGoogle Scholar
  38. Sun, I. L., Crane, F. L., Grebing, C., and Löw, H. (1984a).J. Bioenerg. Biomembr. 16, 583–595.PubMedGoogle Scholar
  39. Sun, I. L., Crane, F. L., Löw, H., and Grebing, C. (1984b).J. Bioenerg. Biomembr. 16, 209–221.PubMedGoogle Scholar
  40. Sun, I. L., Sun, E. E., and Crane, F. L. (1992a).Biochem. Biophys. Res. Commun. 189, 8–13.PubMedGoogle Scholar
  41. Sun, I. L., Sun, E. E., Crane, F. L., Morré, D. J., Lindgren, A., and Löw, H. (1992b).Proc. Natl. Acad. Sci. USA 89, 11126–11130.PubMedGoogle Scholar
  42. Sun, I. L., Sun, E. E., and Crane, F. L. (1995).Protoplasma 184, 214–219.Google Scholar
  43. Vaillant, F., and Nagley, P. (1995).Hum. Mol. Genet. 4, 903–914.PubMedGoogle Scholar
  44. Vaillant, F., Loveland, B. E., Nagley, P., and Linnane, A. W. (1991).Biochem. Int. 23, 571–580.PubMedGoogle Scholar
  45. van Iwaarden, P. R., Driessen, A. J. M., and Konings, W. N. (1992).Biochim. Biophys. Acta 1113, 161–170.PubMedGoogle Scholar
  46. VanSteveninck, J., Weed, R. I., and Rothstein, A. (1965).J. Gen. Physiol. 48, 617–632.PubMedGoogle Scholar
  47. Villalba, J. M., Navarro, F., Córdoba, F., Serrano, A., Arroyo, A., Crane, F. L., and Navas, P. (1995).Proc. Natl. Acad. Sci. USA 92, 4887–4891.PubMedGoogle Scholar
  48. Wan, Y.-R, Williams, R. H., Folkers, K., Leung, K. H., and Racker, E. (1975).Biochem. Biophys. Res. Commun. 63, 11–15.PubMedGoogle Scholar
  49. Wanders, R. J. A., Kos, M., Roest, B., Meijer, A. J., Schrakamp, G., Heymans, H. S. A., Tegelaers, W. H. H., van den Bosch, H., Schutgens, R. B. H., and Tager, J. M. (1984).Biochem. Biophys. Res. Commun. 123, 1054–1061.PubMedGoogle Scholar
  50. Wolvetang, E. J., Johnson, K. L., Krauer, K., Ralph, S. J., and Linnane, A. W. (1994).FEBS Lett. 339, 40–44.PubMedGoogle Scholar
  51. Wolvetang, E. J., Larm, J. A., Mousoulas, P. and Lawen, A. (1996).Cell Growth Differ. 7, in press.Google Scholar
  52. Wróblewski, F., and LaDue, J. S. (1955).Proc. Soc. Exp. Biol. Med. 90, 210–213.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • FranÇois Vaillant
    • 1
  • Jari A. Larm
    • 1
  • Gabrielle L. McMullen
    • 1
  • Ernst J. Wolvetang
    • 1
  • Alfons Lawen
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia

Personalised recommendations