Mathematical Notes

, Volume 55, Issue 6, pp 596–600 | Cite as

On polynomial congruences

  • S. V. Konyagin
  • T. Steger


Polynomial Congruence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Kamke, “Zur Arithmetik der Polynome,”Math. Z.,19, 247–264 (1923/24).CrossRefMathSciNetGoogle Scholar
  2. 2.
    S. B. Stechkin, “Estimate of a total rational trigonometric sum,”Tr. Mat. Inst. Steklov Akad. Nauk SSSR,143, 188–207 (1977).Google Scholar
  3. 3.
    S. V. Konyagin, “On the number of solutions for a congruence of thenth power in one unknown,”Mat. Sb.,109, No. 2, 171–187 (1979);110, No. 1, 158 (1979).Google Scholar
  4. 4.
    N. M. Korobov, “Double trigonometrical sums and their applications,”Mat. Zametki,6, No. 1, 25–34 (1969).Google Scholar
  5. 5.
    D. A. Mit'kin, “On estimates and asymptotic formulas for rational trigonometric sums close to total ones,”Mat. Sb.,122, No. 4, 527–545 (1983).Google Scholar
  6. 6.
    I. E. Shparlinskii, “On polynomial congruences,”Ada Arith.,58, No. 2, 153–156 (1991).Google Scholar
  7. 7.
    Z. I. Borevich and I. R. Shafarevich,Number Theory [in Russian], Nauka, Moscow (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. V. Konyagin
    • 1
  • T. Steger
    • 1
  1. 1.Moscow State University. University of GeorgiaAthensUSA

Personalised recommendations