Journal of Bioenergetics and Biomembranes

, Volume 27, Issue 1, pp 117–125 | Cite as

Content and binding characteristics of the mitochondrial ATPase inhibitor, IF1 in the tissues of several slow and fast heart-rate homeothermic species and in two poikilotherms

  • William Rouslin
  • Gerald D. Frank
  • Charles W. Broge
Original Articles


We determined the IF1 contents of pig, rabbit, rat, mouse, guinea pig, pigeon, turtle, and frog heart mitochondria and the effects of varying ionic strength upon the IF1-mediated inhibition of the ATPase activity of IF1-depleted rabbit heart mitochondrial particles (RHMP) by IF1-containing extracts from these same eight species. The IF1 binding experiments were run at both species-endogenous IF1 levels and at an IF1 level normalized to that present in rabbit heart mitochondria. When species-endogenous levels of rabbit heart IF1 or either speciesendogenous or normalized levels of pig heart IF1 were incubated with RHMP over a range of KCl concentrations, increasing the [KCl] to 150 mM had relatively little effect on IF1-mediated ATPase inhibition. When either species-endogenous or normalized levels of guinea pig, pigeon, turtle, or frog heart IF1 were incubated with RHMP under the same conditions, increasing [KCl] to 150 mM nearly completely blocked IF1-mediated ATPase inhibition. While species-endogenous levels of rat and mouse heart IF1 inhibited the ATPase activity of RHMP virtually not at all at any [KCl] examined, normalized levels of rat and mouse IF1 inhibited the ATPase activity of RHMP to the same extents as species-endogenous levels of pig and rabbit heart IF1, respectively, in the presence of increasing [KCl]. These experiments suggest that, while pig and rabbit heart mitochondria contain a full complement of higher-affinity IF1, pigeon, guinea pig, turtle, and frog heart mitochondria cell contain essentially a full complement of a lower-affinity form of IF1. In contrast, rat and mouse heart mitochondria contain only low levels of IF1 which exhibit binding characteristics similar to those of the pig and rabbit heart inhibitor. The guinea pig is the only mammal thus far examined that contains a loweraffinity form of IF1. In the present study we also determined the IF1 contents and IF1-to-F1 ATPase activity ratios of cardiac muscle, skeletal muscle, liver, and brain mitochondria of rabbit, pigeon, and rat, species representative of the three homeothermic regulatory classes.

Key words

Mitochondrial ATPase ATPase inhibitor protein IF1 myocardial ischemia effects of ionic strength higher and lower affinity IF1 homeothermic and poikilothermic species tissue distribution of If1 cardiac muscle skeletal muscle liver brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beltran, C., de Gomez-Puyou, M. T., Gomez-Puyou, A., and Darzon, A. (1984).Eur. J. Biochem. 144, 151–157.PubMedGoogle Scholar
  2. Frangione, B., Rosenwasser, R., Pencfsky, H. S., and Pullman, M. E. (1981).Proc. Natl. Acad. Sci. USA 78, 7403–7407.PubMedGoogle Scholar
  3. Husain, I., and Harris, D. A. (1983).FEBS Lett. 160, 110–114.PubMedGoogle Scholar
  4. Ishikawa, N., Yoshida, Y., Hashimoto, T., Ogasawara, N., Yoshikawa, H., Imamoto, F., and Tagawa, K. (1990).J. Biol. Chem. 265. 6274–6278.Google Scholar
  5. Klein, G., and Vignais, P. V. (1983).J. Bioenerg. Biomembr. 15, 347–362.Google Scholar
  6. Klein, G., Satre, M., Dianoux, A.-C., and Vignais, P. V. (1980).Biochemistry 19, 2919–2925.PubMedGoogle Scholar
  7. Lebowilz, M. S., and Pedersen, P. L. (1993).Arch. Biochem. Biophys. 301, 64–70.PubMedGoogle Scholar
  8. Li, W.-H., Gouy, M., Sharp, P. M., O'Huigin, C., and Yang, Y.-W. (1990).Proc. Natl. Acad. Sci. USA 87, 6703–6707.PubMedGoogle Scholar
  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  10. Pullman, M. E., and Monroy, G. C. (1963).J. Biol. Chem. 238, 3762–3769.Google Scholar
  11. Rouslin, W. (1983a).J. Biol. Chem. 258, 9657–9661.Google Scholar
  12. Rouslin, W. (1983b).Am. J. Physiol. 244, H743-H748.PubMedGoogle Scholar
  13. Rouslin, W. (1987a).Am. J. Physiol. 252, H622-H627.PubMedGoogle Scholar
  14. Rouslin, W. (1987b).J. Biol. Chem. 262, 3472–3476.Google Scholar
  15. Rouslin, W. (1988).J. Mol. Cell. Cardiol. 20, 999–1007.PubMedGoogle Scholar
  16. Rouslin, W. (1991).J. Bioenerg. Biomembr. 23, 873–888.PubMedGoogle Scholar
  17. Rouslin, W., and Broge, C. W. (1989).J. Biol. Chem. 264, 15224–15229.Google Scholar
  18. Rouslin, W., and Broge, C. W. (1990).Arch. Biochem. Biophys. 280, 103–111.PubMedGoogle Scholar
  19. Rouslin, W., and Broge, C. W. (1992).Ann. N.Y. Acad. Sci. 671, 505–506.PubMedGoogle Scholar
  20. Rouslin, W., and Broge, C. W. (1993).Arch. Biochem. Biophys. 303, 443–450.PubMedGoogle Scholar
  21. Rouslin, W., and Broge, C. W. (1994).Anal. Biochem.,222, 68–75.PubMedGoogle Scholar
  22. Rouslin, W., and Pullman, M. E. (1987).J. Mol. Cell. Cardiol. 19, 661–668.PubMedGoogle Scholar
  23. Rouslin, W., Erickson, J. L., and Solaro, R. J. (1986).Am. J. Physiol. 250, H503-H508.PubMedGoogle Scholar
  24. Rouslin, W., Broge, C. W., and Grupp, I. L. (1990).Am. J. Physiol. 259, H1759-H1766.PubMedGoogle Scholar
  25. Schwertzmann, K., and Pedersen, P. L. (1981).Biochemistry 250, 1–18.Google Scholar
  26. Tzagoloff, A., Byington, K. H., and MacLennan, D. H. (1968).J. Biol. Chem. 243, 2405–2412.Google Scholar
  27. Walker, J. E., Gay, N. J., Powell, S. J., Kostina, M., and Dyer, M. R. (1987).Biochemistry 26, 8613–8619.PubMedGoogle Scholar
  28. Yoshida, Y., Sato, T., Hashimoto, T., Ichikawa, N., Nakai, S., Yoshikawa, H., Imamoto, F., and Tagawa, K. (1990).Eur. J. Biochem. 192, 49–53.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • William Rouslin
    • 1
  • Gerald D. Frank
    • 1
  • Charles W. Broge
    • 1
  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnati

Personalised recommendations