Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 4, pp 379–385

The role of gap junction membrane channels in development

  • Cecilia W. Lo


In most developmental systems, gap junction-mediated cell-cell communication (GJC) can be detected from very early stages of embryogenesis. This usually results in the entire embryo becoming linked as a syncytium. However, as development progresses, GJC becomes restricted at discrete boundaries, leading to the subdivision of the embryo into communication compartment domains. Analysis of gap junction gene expression suggests that this functional subdivision of GJC may be mediated by the differential expression of the connexin gene family. The temporal-spatial pattern of connexin gene expression during mouse embryogenesis is highly suggestive of a role for gap junctions in inductive interactions, being regionally restricted in distinct developmentally significant domains. Using reverse genetic approaches to manipulate connexin gene function, direct evidence has been obtained for the connexin 43 (Cx43) gap junction gene playing a role in mammalian development. The challenges in the future are the identification of the target cell populations and the cell signaling processes in which Cx43-mediated cell-cell interactions are critically required in mammalian development. Our preliminary observations suggest that neural crest cells may be one such cell population.

Key words

Development gap junctions mouse embryos Drosophila connexin 43 transgenic mouse neural tube defects neural crest cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, M. V. L., and Trinkaus, J. P. (1970).J. Cell Biol. 44, 592–610.CrossRefPubMedGoogle Scholar
  2. Bergohoffen, J., Scherer, S. S., Wang, S., Oronzi Scott, M., Bone, L. J., Paul, D. L., Chen, K., Lensch, M. W., Chance, P. F., and Fischbeck, K. H. (1993).Science 262, 2039–2042PubMedGoogle Scholar
  3. Blennerhassett, M., and Caveney, S. (1984).Nature 24, 361–364.CrossRefGoogle Scholar
  4. Brisette, J. L., Kumar, N. L., Gilula, N. B., Hall, J. E., and Dotto G. P. (1994).Proc. Natl. Acad. Sci. USA 91, 6435–6457.Google Scholar
  5. Britz-Cunningham, S. H., Shah, M. M., Zuppan, C. W., and Fletcher, W. H. (1995).New Engl. J. Med. 332, 1323–1329.CrossRefPubMedGoogle Scholar
  6. Bruzzone, R., Haefliger, J.-A., Gimlich, R. L., and Paul, D. L. (1993)Mol. Biol. Cell 4, 7–20.PubMedGoogle Scholar
  7. Bruzzone, R., White, T. W., Scherer, S. S., Fischbeck, K. H., and Paul, D. L. (1994).Neuron 13, 1253–1260.CrossRefPubMedGoogle Scholar
  8. Crick, F. C. H., and Lawrence, P. A. (1975). Compartments and polyclones in insect development.Science 189, 340–347.PubMedGoogle Scholar
  9. Ewart, J., Cohen, M. F., Lazatin, B. O., Park, S. M. J., Villabon, S., Huang, S., and Lo, C. W. (1995).Mol. Biol. Cell 6, 297a.Google Scholar
  10. Furshpan, E. J., and Potter, D. D. (1968).Curr. Top. Dev. Biol. 3, 95–126.PubMedGoogle Scholar
  11. Garcia-Bellido, A. (1975).Ciba Found. Symp. 29, 161–182.PubMedGoogle Scholar
  12. Ghosh, S., Safarik, R., Klier, G., Monosov, E., Gilula, N. B., and Kumar, N. M. (1995).Mol. Biol Cell 6, 189a.Google Scholar
  13. Guthrie, S. (1984).Nature 311, 149–151.CrossRefPubMedGoogle Scholar
  14. Ito, S., and Hori, N. (1966).J. Gen. Physiol. 19, 1019–1027.CrossRefGoogle Scholar
  15. Ito, S., and Loewenstein, W. R. (1969).Dev. Biol. 19, 228–243.CrossRefPubMedGoogle Scholar
  16. Kalimi, G., and Lo, C. W. (1988).J. Cell Biol. 107, 241–255.CrossRefPubMedGoogle Scholar
  17. Kalimi, G., and Lo, C. W., (1989).J. Cell Biol. 109, 3015–3026.CrossRefPubMedGoogle Scholar
  18. Kirby, M. (1993).Trends Cardiovasc. Med. 3, 18–23.CrossRefGoogle Scholar
  19. Koedood, M., Fichtel, A., Meier, P., and Mitchell, P. J. (1995).J. Virol. 69, 2194–2207.PubMedGoogle Scholar
  20. Lawrence, P. A. (1966).J. Exp. Biol. 44, 607–620.Google Scholar
  21. Lo, C. W., and Gilula, N. B. (1979a).Cell 18, 399–409.CrossRefPubMedGoogle Scholar
  22. Lo, C. W. and Gilula, N. B. (1979b).Cell 18, 411–422.CrossRefPubMedGoogle Scholar
  23. Locke, M. (1967).Adv. Morphogenesis 6, 33–88.Google Scholar
  24. Loewenstein, W. R., and Rose, B. (1992).Semi. Cell Biol. 3, 59–79.Google Scholar
  25. Michaelke, W. (1977).J. Membr Biol. 33, 1–20.CrossRefPubMedGoogle Scholar
  26. Moreno, A. P., Fishman, G. I., Beyer, E. C., and Spray, D. C. (1995).Prog. Cell Res. 4, 405–410.Google Scholar
  27. Nishi, M., Kumar, N. M., and Gilula, N. B. (1991).Dev. Biol. 146, 117–130.CrossRefPubMedGoogle Scholar
  28. Olson, D. J., and Moon, R. T. (1992).Dev. Biol. 151, 204–212.CrossRefPubMedGoogle Scholar
  29. Olson, D. J., Christian, J. L., and Moon, R. T. (1991).Science 252, 1173–1176.PubMedGoogle Scholar
  30. Pauken, C. M., and Lo, C. W. (1995).Mol. Reprod. Dev. 41, 195–203.CrossRefPubMedGoogle Scholar
  31. Paul, D. L., Yu, K., Bruzzone, R., Gimlich, R. L., and Goodneough, D. A. (1995).Development 121, 371–381.PubMedGoogle Scholar
  32. Reaume, A. G., de Sousa, P. A., Kulkarni, S., Langille, B. L., Zhu, D., Davies, T. C., Junija, S. C., Kidder, G. M., and Rossant, G. M. (1995).Science 267, 1831–1834.PubMedGoogle Scholar
  33. Ruangvoravat, C. P., and Lo, C. W. (1992).Dynamics 193, 70–82.Google Scholar
  34. Serras, F., Damen, P., Dictus, W. J. A. G., Notenboom, R. G. E., and Van den Biggelaar, J. A. M. (1989).Roux. Arch. Dev. Biol. 198, 191–200.CrossRefGoogle Scholar
  35. Sheridan, J. D. (1966).J. Cell Biol. 31, C1-C5.CrossRefPubMedGoogle Scholar
  36. Sheridan, J. D. (1968).J. Cell Biol. 37, 650–659.CrossRefPubMedGoogle Scholar
  37. Steinberg, T. H., Civitelli, R., Geist, S. T., Robertson, A. J., Hick, E., Veenstra, R. D., Wang, H.-Z., Warlow, P. M., Westphale, E. M., Laing, J. G., and Beyer, E. C. (1994).EMBO J 13, 744–750.PubMedGoogle Scholar
  38. Stumpf, H. (1966).Nature 212, 430–431.PubMedGoogle Scholar
  39. Sullivan, R., and Lo, C. W. (1995).J. Cell Biol. 130, 419–429.CrossRefPubMedGoogle Scholar
  40. Sullivan, R., Villabon, S., Park, J., Patel, N., Lazatin, J., Lazatin, B., Cohen, M., Park, J., and Lo, C. W. (1995).Mol. Biol. Cell 6, 300a.Google Scholar
  41. Tomasetto, C., Neveu, M. J., Daley, J., Horan, P. K., and Sager, R. (1993).J. Cell Biol. 122, 157–167.CrossRefPubMedGoogle Scholar
  42. Valdimarsson, G., DeSousa, P. A., Beyer, E. C., Paul, D. L., and Kidder, G. M. (1991).Mol. Reprod. Dev. 30, 18–26.CrossRefPubMedGoogle Scholar
  43. Veenstra, R. D., Wang, H.-Z., Beyer, E. C., and Brink, P. R. (1994).Circ. Res. 75, 483–490.PubMedGoogle Scholar
  44. Warner, A. E., and Lawrence, P. A. (1982).Cell 28, 243–252.CrossRefPubMedGoogle Scholar
  45. Weir, M. P., and Lo, C. W. (1982).Proc. Natl. Acad. Sci. USA 79, 3232–3235.PubMedGoogle Scholar
  46. Weir, M. P., and Lo, C. W. (1984).Dev. Biol. 102, 130–146.CrossRefPubMedGoogle Scholar
  47. Weir, M. P., and Lo, C. W. (1985).Dev. Biol. 110, 84–90.CrossRefPubMedGoogle Scholar
  48. Werner, R., Levine, E., Rabadan-Diehl, C., and Dahl, G. (1989).Proc. Natl. Acad. Sci. USA 86, 5380–5384.PubMedGoogle Scholar
  49. Wilkinson, D. G., Bailes, J. A., and McMahon, A. P. (1987).Cell 50, 79–88.CrossRefPubMedGoogle Scholar
  50. Yancey, S. B., Biswal, S. and Revel, J. P. (1992).Development 114, 203–212.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Cecilia W. Lo
    • 1
  1. 1.Biology DepartmentUniversity of PennsylvaniaPhiladelphia

Personalised recommendations