Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 4, pp 327–337 | Cite as

Size and selectivity of gap junction channels formed from different connexins

  • Richard D. Veenstra
Article

Abstract

Gap junction channels have long been viewed as static structures containing a large-diameter, aqueous pore. This pore has a high permeability to hydrophilic molecules of ≈900 daltons in molecular weight and a weak ionic selectivity. The evidence leading to these conclusions is reviewed in the context of more recent observations primarily coming from unitary channel recordings from transfected connexin channels expressed in communication-deficient cell lines. What is emerging is a more diverse view of connexin-specific gap junction channel structure and function where electrical conductance, ionic selectivity, and dye permeability vary by one full order of magnitude or more. Furthermore, the often held contention that channel conductance and ionic or molecular selectivity are inversely proportional is refuted by recent evidence from five distinct connexin channels. The molecular basis for this diversity of channel function remains to be identified for the connexin family of gap junction proteins.

Key words

Connexin channel conductance ionic selectivity dye permeability 6-carboxyfluorescein 2′,7′-dichlorofluorescein Lucifer Yellow biionic reversal potentials conductance ratios Goldman-Hodgkin-Katz voltage and current equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beblo, D. A., Wang, H.-Z., Westphale, E. M., Beyer, E. C., and Veenstra, R. D. (1994).Circulation 90, 1–359.PubMedGoogle Scholar
  2. Bennett, M. V. L., Barrio, L. C., Bargiello, T. A., Spray, D. C., Hertzberg, E., and Saez, J. C. (1991).Neuron 6, 305–320.CrossRefPubMedGoogle Scholar
  3. Beyer, E. C., and Willecke, K. (1996). InAdvances in Molecular and Cell Biology, Vol. 18 (Hertzberg, E. L., ed.), JAI Press, Greenwich, Connecticut, in press.Google Scholar
  4. Brink, P. R. (1991).J. Cardiovasc. Electrophysiol. 2, 360–366.Google Scholar
  5. Brink, P. R., and Dewey, M. M. (1980).Nature 285, 101–102.CrossRefPubMedGoogle Scholar
  6. Brink, P. R., and Fan, S.-F. (1989).Biophys. J. 56, 579–593.PubMedGoogle Scholar
  7. Brink, P. R., and Ramanan, S. V. (1985).Biophys. J. 48, 299–309.PubMedGoogle Scholar
  8. Buehler, L. (1994).Science 265, 1018–1019.Google Scholar
  9. Dahl, G., Miller, T., Paul, D., Voellmy, R., Werner, R. (1987).Science 236, 1290–1293.PubMedGoogle Scholar
  10. Dahl, G., Nonner, W., and Werner, R. (1994).Biophys. J. 67, 1816–1822.PubMedGoogle Scholar
  11. Dwyer, T. M., Adams, D. J., and Hille, B. (1980).J. Gen. Physiol. 75, 469–492.CrossRefPubMedGoogle Scholar
  12. Eghbali, J., Kessler, A., and Spray, D. C. (1990).Proc. Natl. Acad. Sci. USA 87, 1328–1331.PubMedGoogle Scholar
  13. Elfgang, C., Eckert, R., Lichtenberg-Fraté, H., Butterweck, A., Traub, O., Klein, R. A., Hülser, D. F., and Willecke, K. (1995).J. Cell Biol. 129, 805–817.CrossRefPubMedGoogle Scholar
  14. Finkelstein, A. (1994).Science 265, 1017–1018.PubMedGoogle Scholar
  15. Fishman, G. I., Spray, D. C., and Leinwand, L. A. (1990).J. Cell Biol. 111, 589–598.CrossRefPubMedGoogle Scholar
  16. Fishman, G. I., Moreno, A. P., Spray, D. C., and Leinwand, L. A. (1991).Proc. Natl. Acad. Sci. USA 88, 3525–3529.PubMedGoogle Scholar
  17. Flagg-Newton, J., Simpson, I., and Loewenstein, W. R. (1979).Science 205, 404–407.PubMedGoogle Scholar
  18. Hille, B. (1992).Ionic Channels of Excitable Membranes, Sinauer Associates Inc., Sunderland, Massachusetts.Google Scholar
  19. Imanaga, I., Kameyama, M., and Irisawa, H. (1987).Am. J. Physiol. (Heart Circ. Physiol. 21) 252, H223-H232.Google Scholar
  20. Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., and Numa, S. (1988).Nature 335, 645–648.CrossRefPubMedGoogle Scholar
  21. Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y., and Numa, S. (1986).Nature 324, 670–674.CrossRefPubMedGoogle Scholar
  22. Levitt, D. G. (1975).Biophys. J. 15, 533–551.PubMedGoogle Scholar
  23. Meister, M. (1994).Science 265, 1018.Google Scholar
  24. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K.-i., Fujita, Y., Fuduka, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S. (1985).Nature 313, 364–369.CrossRefPubMedGoogle Scholar
  25. Neyton, J., and Trautmann, A. (1985).Nature 317, 331–335.CrossRefPubMedGoogle Scholar
  26. Renkin, E. M. (1955).J. Gen. Physiol. 38, 225–243.Google Scholar
  27. Robinson, S. R., Hampson, E. C. G. M., Munro, M. N., and Vaney, D. I. (1993).Science 262, 1072–1074.PubMedGoogle Scholar
  28. Safranyos, R. G. A., Caveney, S., Miller, J. G., and Peterson, N. O. (1987).Proc. Natl. Acad. Sci. USA 84, 2272–2276.PubMedGoogle Scholar
  29. Schwarzmann, G., Weingandt, H., Rose, B., Zimmermann, A., Ben-Haim, D., and Loewenstein, W. R. (1981).Science 213, 551–553.PubMedGoogle Scholar
  30. Simpson, I., Rose, B., and Loewenstein, W. R. (1977).Science 195, 294–296.PubMedGoogle Scholar
  31. Spray, D. C., Moreno, A. P., Eghbali, B., Chanson, M., and Fishman, G. I. (1992).Biophys. J. 62, 48–50.PubMedGoogle Scholar
  32. Stewart, W. W. (1978).Cell 14, 741–759.CrossRefPubMedGoogle Scholar
  33. Suchyna, T. M., Veenstra, R. D., Chilton, M., and Nicholson, B. J. (1994).Mol. Biol. Cell 5, 199a.Google Scholar
  34. Unwin, N. (1993).J. Mol. Biol. 229, 1101–1124.CrossRefPubMedGoogle Scholar
  35. Veenstra, R. D., and Brink, P. R. (1992). InCell-Cell Interactions: A Practical Approach (Stevenson, B. R., Gallin, W. J., and Paul, D. L., eds.), IRL Press, Oxford, UK, pp. 167–201.Google Scholar
  36. Veenstra, R. D., and DeHaan, R. L. (1986).Science 233, 972–974.PubMedGoogle Scholar
  37. Veenstra, R. D., Wang, H.-Z., Westphale, E. M., and Beyer, E. C. (1992).Circ. Res. 71, 1277–1283.PubMedGoogle Scholar
  38. Veenstra, R. D., Wang, H.-Z., Beyer, E. C., Ramanan, S. V., and Brink, P. R. (1994).Biophys. J. 68, 1915–1928.Google Scholar
  39. Veenstra, R. D., Beblo, D. A., Wang, H.-Z., and Brink, P. R. (1995a).Mol. Biol. Cell 6, 190a.Google Scholar
  40. Veenstra, R. D., Wang, H.-Z., Beblo, D. A., Chilton, M. G., Harris, A. L., Beyer, E. C., and Brink, P. R. (1995b)Circ. Res. 77, 1156–1165.PubMedGoogle Scholar
  41. Verselis, V. K., and Veenstra, R. D. (1996). InAdvances in Molecular and Cell Biology, Vol. 18 (Hertzberg, E. L., ed.), JAI Press, Greenwich, Connecticut, in press.Google Scholar
  42. Villaroel, A., and Sakmann, B. (1992).Biophys. J. 62, 196–205.PubMedGoogle Scholar
  43. Villaroel, A., Herlitze, S., Witzemann, V. Koenen, M., and Sakmann, B. (1992).Proc. R. Soc. London B 249, 317–324.Google Scholar
  44. Wang, F., and Imoto, K. (1992).Proc. R. Soc. London B 250, 11–17.Google Scholar
  45. Wang, H.-Z., and Veenstra, R. D. (1995).Circulation 92, 1–40.PubMedGoogle Scholar
  46. Wang, H.-Z., Li, J., Lemanski, L. F., and Veenstra, R. D. (1992).Biophys. J. 63, 139–151.PubMedGoogle Scholar
  47. Willecke, K., Hennemann, H., Dahl, E., Jungbluth, S., and Heynkes, R. (1991).Eur. J. Cell Biol. 56, 1–7.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Richard D. Veenstra
    • 1
  1. 1.Department of PharmacologySUNY Health Science Center at SyracuseSyracuse

Personalised recommendations