Journal of Bioenergetics and Biomembranes

, Volume 27, Issue 2, pp 169–179 | Cite as

Porphobilinogen synthase, the first source of Heme's asymmetry

  • Eileen K. Jaffe


Porphobilinogen is the monopyrrole precursor of all biological tetrapyrroles. The biosynthesis of porphobilinogen involves the asymmetric condensation of two molecules of 5-aminolevulinate and is carried out by the enzyme porphobilinogen synthase (PBGS), also known as 5-aminolevulinate dehydratase. This review documents what is known about the mechanism of the PBGS-catalyzed reaction. The metal ion constitutents of PBGS are of particular interest because PBGS is a primary target for the environmental toxin lead. Mammalian PBGS contains two zinc ions at each active site. Bacterial and plant PBGS use a third metal ion, magnesium, as an allosteric activator. In addition, some bacterial and plant PBGS may use magnesium in place of one or both of the zinc ions of mammalian PBGS. These phylogenetic variations in metal ion usage are described along with a proposed rationale for the evolutionary divergence in metal ion usage. Finally, I describe what is known about the structure of PBGS, an enzyme which has as yet eluded crystal structure determination.

Key words

Porphobilinogen synthase 5-aminolevulinate dehydratase enzyme mechanisms zinc metalloenzyme magnesium proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battle, A. M., and Stella, A. M. (1978).Int. J. Biochem. 9, 861–864.PubMedGoogle Scholar
  2. Baum, S. J., and Plane, R. A. (1966).J. Am. Chem. Soc. 88, 910–913.Google Scholar
  3. Beale, S. (1994). The sequence ofChlamydomonus PBGS, submitted to GenBank 1/95, Accession Number U19876.Google Scholar
  4. Bevan, D. R., Bodlaender, P., and Shemin, D. (1980).J. Biol. Chem. 255, 2030–2035.PubMedGoogle Scholar
  5. Bishop, T. R., Frelin, L. P., and Boyer, S. H. (1986).Nucleic Acids Res. 14, 0115.Google Scholar
  6. Bishop, T. R., Hodes, Z. I., Frelin, L. P., and Boyer, S. H. (1989)Nucleic Acids Res. 17, 1775.PubMedGoogle Scholar
  7. Bock, C., Katz, A., and Glusker, J. P. (1995).J. Am. Chem. Soc., in press.Google Scholar
  8. Boese, Q. F., Spano, A. J., Li, J. M., and Timko, M. P. (1991).J. Biol. Chem. 266, 17060–17066.PubMedGoogle Scholar
  9. Bröckl, G., Berchtold, M., Behr, M., and Konig, H. (1992)Gene 119, 151–152.PubMedGoogle Scholar
  10. Chaudhry, A. G., and Jordan, P. M. (1976).Biochem. Soc. Trans. 4, 760–761.PubMedGoogle Scholar
  11. Chauhan, S., and O'Brian, M. R. (1993).J. Bacteriol. 175, 7222–7227.PubMedGoogle Scholar
  12. Christianson, D. W., and Lipscomb, W. N. (1986).Proc. Natl. Acad. Sci. USA 83, 7568–7572.PubMedGoogle Scholar
  13. Clark, S. P. (1992).CABIOS 8, 535–583.PubMedGoogle Scholar
  14. Dent, A. J., Beyersmann, D., Block, C., and Hasnain, S. S. (1990).Biochemistry 29, 7822–7828.PubMedGoogle Scholar
  15. Echelard, Y., Dymetryszyn, J., Drolet, M., and Sasarman, A. (1988).Mol. Gen. Genet. 214, 503–508.PubMedGoogle Scholar
  16. Evans, J. N. S., Fagerness, P. E., Mackenzie, N. E., and Scott, A. I. (1985).Magn. Reson. Chem. 23, 939–944.Google Scholar
  17. Fabiano, E., and Goldin, B. T. (1991).J. Chem. Soc. Perkin Trans. 1, 3371–3375.Google Scholar
  18. Fukuda, H., Paredes, S. R., and Batlle, A. M. (1988).Comp. Biochem. Physiol. B: Comp. Biochem. 91, 285–291.Google Scholar
  19. Fukuda, H., Sopena de Kracoff, Y. E., Inigo, L. E., Paredes, S. R., Ferramola de Sancovich, A. M., Sancovich, H. A., and Batlle, A. M. (1990).J. Enzyme Inhib. 3, 295–302.PubMedGoogle Scholar
  20. Gibbs, P. N., and Jordan, P. M. (1986).Biochem. J. 236, 447–451.PubMedGoogle Scholar
  21. Gnonlonfoun, N., Filella, M., and Berthon, G. (1991).J. Inorg. Biochem. 42, 207–215.PubMedGoogle Scholar
  22. Gribskov, M., and Devereux, J. (1991).Sequence Analysis Primer, Stockton Press, New York.Google Scholar
  23. Guo, G. G., Gu, M., and Etlinger, J. D. (1994).J. Biol. Chem. 269, 12399–12402.PubMedGoogle Scholar
  24. Gurba, P. E., Sennett, R. E., and Kobes, R. D. (1972).Arch. Biochem. Biophys. 150, 130–136.PubMedGoogle Scholar
  25. Hampp, R., Kriebitzsch, C., and Ziegler, H. (1974).Naturwissenschaften 61, 504–505.PubMedGoogle Scholar
  26. Hansson, M., Rutberg, L., Schroder, I., and Hederstedt, L. (1991).J. Bacteriol. 173, 2590–2599.PubMedGoogle Scholar
  27. Hernberg, S., and Nikkanen, J. (1970).The Lancet, January 10, p. 63–64.Google Scholar
  28. Hester, G., Brenner-Holzach, O., Rossi, F. A., Struck-Donatz, M., Winterhalter, K. H., Smit, J. D., and Piontek, K. (1991).FEBS Lett. 292, 237–242.PubMedGoogle Scholar
  29. Indest, K., and Biel, A. J. (1994). Genbank Accession Number RCU14593.Google Scholar
  30. Jaffe, E. K. (1993).Comments Inorg. Chem. 15, 67–93.Google Scholar
  31. Jaffe, E. K., and Hanes, D. (1986).J. Biol. Chem. 261, 9348–9353.PubMedGoogle Scholar
  32. Jaffe, E. K., and Markham, G. D. (1987). [published erratum appears inBiochemistry 26, 8030, 1987].Biochemistry 26, 4258–4264.PubMedGoogle Scholar
  33. Jaffe, E. K., and Markham, G. D. (1988).Biochemistry 27, 4475–4481.PubMedGoogle Scholar
  34. Jaffe, E. K., Salowe, S. P., Chen, N. T., and DeHaven, P. A. (1984).J. Biol. Chem. 259, 5032–5036.PubMedGoogle Scholar
  35. Jaffe, E. K., Markham, G. D., and Rajagopalan, J. S. (1990).Biochemistry 29, 8345–8350.PubMedGoogle Scholar
  36. Jaffe, E. K., Bagla, S., and Michini, P. A. (1991).Biol. Trace Element Res. 28, 223–231.Google Scholar
  37. Jaffe, E. K., Abrams, W. R., Kaempfen, K. X., and Harris, K. A. (1992).Bioichemistry 31, 2113–2123.Google Scholar
  38. Jaffe, E. K., Volin, M., Myers, C. B., and Abrams, W. R. (1994).Biochemistry 33, 11554–11562.PubMedGoogle Scholar
  39. Jaffe, E. K., Ali, S., Mitchell, L. W., Taylor, K. M., Volin, M., and Markham, G. D. (1995).Biochemistry 34, 244–251.PubMedGoogle Scholar
  40. Jones, M. C., Jenkins, J. M., Smith, A. G., and Howe, C. J. (1994).Plant Mol. Biol. 24, 435–448.PubMedGoogle Scholar
  41. Jordan, P. (1990). InBiosynthesis of Heme and Chlorophylls (Dailey, H. A., ed.), McGraw-Hill, New York, pp. 55–121.Google Scholar
  42. Jordan, P. M. (1991). InNew Comprehensive Biochemistry, Vol. 19 (Neuberger, A., and Van Deenan, L. L. M., eds.), Elsevier, Amsterdam.Google Scholar
  43. Jordan, P. M., and Seehra, J. S. (1980).FEBS Lett. 114, 283–286.PubMedGoogle Scholar
  44. Kaczor, C. M., Smith, M. W., Sangwan, I., and O'Brian, M. R. (1994).Plant Physiol. 104, 1411–1417.PubMedGoogle Scholar
  45. Li, J. M., Russell, C. S., and Cosloy, S. D. (1989).Gene 75, 177–184.PubMedGoogle Scholar
  46. Liedgens, W., Lutz, C., and Schneider, H. A. (1983).Eur. J. Biochem. 135, 75–79.PubMedGoogle Scholar
  47. Lingner, B., and Kleinschmidt, T. (1983).Biosciences 38, 1059–1061.PubMedGoogle Scholar
  48. Liu, J., Lin, S., Blochet, J. E., Pegolet, M., and Lapoint, J. (1993).Biochemistry 32, 11390–11396.PubMedGoogle Scholar
  49. Maralihalli, G. B., Rao, S. R., and Bhagwat, A. S. (1985).Phytochemistry 24, 2533–2536.Google Scholar
  50. Markham, G. D., Myers, C. B., Harris, K. A., Jr., Volin, M., and Jaffe, E. K. (1993).Protein Sci. 2, 71–79.PubMedGoogle Scholar
  51. Masuoka, J., Hegenauer, J., Van Dyke, B. R., and Saltman, P. (1993).J. Biol. Chem. 268, 21533–21537.PubMedGoogle Scholar
  52. Mitchell, L. W., Volin, M., and Jaffe, E. K. (1995)J. Biol. Chem., submitted for publication.Google Scholar
  53. Mitchell, L. W., and Jaffe, E. K. (1993).Arch. Biochem. Biophys. 300, 169–177.PubMedGoogle Scholar
  54. Myers, A. M., Crivellone, M. D., Koerner, T. J., and Tzagoloff, A. (1987).J. Biol. Chem. 262, 16822–16829.PubMedGoogle Scholar
  55. Nandi, D. L. (1978).Biosciences 33, 799–802.PubMedGoogle Scholar
  56. Nandi, D. L., and Shemin, D. (1968).J. Biol. Chem. 243, 1236–1242.PubMedGoogle Scholar
  57. Neier, R. (1996). InAdvances in Nitrogen Heterocycles, Vol. 2 (Christopher, J. Moody, ed.), JAI Press, Greenwich, Connecticut.Google Scholar
  58. Pilz, I., Schwarz, E., Vuga, M., and Beyersmann, D. (1988).Biol. Chem. Hoppe-Seyler 269, 1099–1103.Google Scholar
  59. Polking, G. F., Hannapel, D. J., and Gladon, R. J. (1994). Submission to GenBank 3/94, Accession Number L31367.Google Scholar
  60. Rost, B., and Sander, C. (1993).J. Mol. Biol. 232, 584–599.PubMedGoogle Scholar
  61. Rost, B., and Sander, C. (1994).Proteins 19, 55–72.PubMedGoogle Scholar
  62. Rost, B., Sander, C., and Schneider, R. (1994).CABIOS 10, 53–60.PubMedGoogle Scholar
  63. Schaumburg, A., Schneider-Poetsch, H. J. A. W., and Eckerskom, C. (1992).Z. Naturforsch. Teil C J. Biosci. 47, 77–84.Google Scholar
  64. Seehra, J. S., and Jordan, P. M. (1981).Eur. J. Biochem. 113, 435–446.PubMedGoogle Scholar
  65. Shemin, D. (1972).The Enzymes, 3rd edn. (Boyer, P. D., ed.), Academic Press, New York, pp. 323–337.Google Scholar
  66. Shemin, D. (1976).J. Biochem. 79, 37P-38P.PubMedGoogle Scholar
  67. Shemin, D., and Russell, C. S. (1953).J. Am. Chem. Soc. 75, 4873.Google Scholar
  68. Smith, A. G. (1988).Biochem. J. 249, 423–428.PubMedGoogle Scholar
  69. Sollbach, M., and Schneider-Poetsch, H. J. A. W. (1993). Submission to GenBank 9/93, Accession Number X75043.Google Scholar
  70. Spencer, P., and Jordan, P. M. (1993).Biochem. J. 290, 279–287.PubMedGoogle Scholar
  71. Spencer, P., and Jordan, P. M. (1994).Biochem. J. 300, 373–381.PubMedGoogle Scholar
  72. Tsukamoto, I., Yoshinaga, T., and Sano, S. (1975).Biochem. Biophys. Res. Commun. 67, 294–300.PubMedGoogle Scholar
  73. Tsukamoto, I., Yoshinaga, T., and Sano, S. (1979).Biochim. Biophys. Acta 570, 167–178.PubMedGoogle Scholar
  74. Walker, C. J., and Weinstein, J. D. (1994).Biochem. J. 299, 277–284.PubMedGoogle Scholar
  75. Wetmur, J. G., Bishop, D. F., Cantelmo, C., and Desnick, R. J. (1986).Proc. Natl. Acad. Sci. USA 83, 7703–7707.PubMedGoogle Scholar
  76. Wu, W. H., Shemin, D., Richards, K. E., and Williams, R. C. (1974).Proc. Natl. Acad. Sci. USA 71, 1767–1770.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Eileen K. Jaffe
    • 1
  1. 1.Fox Chase Cancer CenterInstitute for Cancer ResearchPhiladelphia

Personalised recommendations