Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 27, Issue 4, pp 379–385 | Cite as

Regulation of alternative oxidase activity in higher plants

  • David A. Day
  • Joseph T. Wiskich
Article

Abstract

Plant mitochondria contain two terminal oxidases: cytochrome oxidase and the cyanideinsensitive alternative oxidase. Electron partioning between the two pathways is regulated by the redox poise of the ubiquinone pool and the activation state of the alternative oxidase. The alternative oxidase appears to exist as a dimer which is active in the reduced, noncovalently linked form and inactive when in the oxidized, covalently linked form. Reduction of the oxidase in isolated tobacco mitochondria occurs upon oxidation of isocitrate or malate and may be mediated by matrix NAD(P)H. The activity of the reduced oxidase is governed by certain other organic acids, notably pyruvate, which appear to interact directly with the enzyme. Pyruvate alters the interaction between the alternative oxidase and ubiquinol so that the oxidase becomes active at much lower levels of ubiquinol and competes with the cytochrome pathway for electrons. These requirements for activation of the alternative oxidase constitute a sophisticated feed-forward control mechanism which determines the extent to which electrons are directed away from the energy-conserving cytochrome pathway to the non-energy conserving alternative oxidase. Such a mechanism fits well with the proposed role of the alternative oxidase as a protective enzyme which prevents over-reduction of the cytochrome chain and fermentation of accumulated pyruvate.

Key words

Plant mitochondria alternative oxidase electron transport protein disulfide bonds enzyme activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azcón-Bieto, J., Lambers, H., and Day, D. A. (1983).Plant Physiol. 72, 598–603.Google Scholar
  2. Bahr, J. T., and Bonner, W. D. (1973).J. Biol. Chem. 248, 3441–3445.PubMedGoogle Scholar
  3. Bodenstein-Lang, J., Buch, A., and Follmann, H. (1989).FEBS Lett. 258, 22–26.CrossRefPubMedGoogle Scholar
  4. Day, D. A. (1992). InMolecular, Biochemical, and Physiological Aspects of Plant Respiration (Lambers, H., and Van der Plas, L. H. W., eds.), SPB Academic Publishing, The Hague, pp. 37–42.Google Scholar
  5. Day, D. A., and Lambers, H. (1983).Physiol. Plant. 58, 155–160.Google Scholar
  6. Day, D. A., Dry, I. B., Soole, K. L., Wiskich, J. T., and Moore, A. L. (1991).Plant Physiol. 95, 948–953.Google Scholar
  7. Day, D. A., Millar, A. H., Wiskich, J. T., and Whelan, J. (1994).Plant Physiol. 106, 1421–1427.PubMedGoogle Scholar
  8. Day, D. A., Whelan, J., Millar, A. H., Siedow, J. N., and Wiskich, J. T. (1995).Aust. J. Plant. Physiol. 22, 497–509.Google Scholar
  9. Dry, I. B., Moore, A. L., Day, D. A., and Wiskich, J. T. (1989).Arch. Biochem. Biophys. 273, 148–157.CrossRefPubMedGoogle Scholar
  10. Elthon, T. E., and McIntosh, L. (1987).Proc. Natl. Acad. Sci. USA 84, 8399–8403.Google Scholar
  11. Elthon, T. E., Nickels, R. L., and McIntosh, L. (1989).Plant Physiol. 89, 1311–1317.Google Scholar
  12. Gardeström, P., and Edwards, G. E. (1983).Plant Physiol. 71, 24–29.Google Scholar
  13. Hoefnagel, M. H. N., Millar, A. H., Wiskich, J. T., and Day, D. A. (1995).Arch. Biochem. Biophys.,318, 394–400.CrossRefPubMedGoogle Scholar
  14. Lambers, H. (1985). InEncyclopedia of Plant Physiology, New Series (Douce, R., and Day, D. A., eds), Vol. 18, Springer-Verlag, Berlin, pp. 418–474.Google Scholar
  15. Lance, C., Chaveau, M., and Dizengremel, P. (1985). InHigher Plant Cell Respiration. Encyclopedia of Plant Physiology, New Series (Douce, R., and Day, D. A., eds.), Vol. 18, Berlin, Springer-Verlag, pp. 202–247.Google Scholar
  16. Laties, G. G. (1982).Annu. Rev. Plant Physiol. 33, 519–555.CrossRefGoogle Scholar
  17. Lidén, A. C., and Akerlund, H.-E. (1993).Physiol. Plant. 87, 134–141.CrossRefGoogle Scholar
  18. McIntosh, L. (1994).Plant Physiol. 105, 781–786.CrossRefPubMedGoogle Scholar
  19. Meeuse, B. J. D. (1975).Annu. Rev. Plant Physiol. 26, 117–126.CrossRefGoogle Scholar
  20. Millar, A. H., Wiskich, J. T., Whelan, J., and Day, D. A. (1993).FEBS Lett. 329, 259–262.CrossRefPubMedGoogle Scholar
  21. Minagawa, N., Sakajo, S., Komiyama, T., and Yoshimoto, A. (1990).FEBS Lett. 267, 114–116.CrossRefPubMedGoogle Scholar
  22. Minagawa, N., Koga, S., Nakano, M., Sakajo, S., and Yoshimoto, A. (1992).FEBS Lett. 302, 217–219.CrossRefPubMedGoogle Scholar
  23. Moore, A. L., and Siedow, J. N. (1991).Biochim. Biophys. Acta 1059, 121–140.PubMedGoogle Scholar
  24. Moore, A. L., Dry, I. B., and Wiskich, J. T. (1988).FEBS Lett. 235, 76–80.CrossRefGoogle Scholar
  25. Purvis, A. C., and Shewfelt, R. L. (1993).Physiol. Plant. 88, 712–718.Google Scholar
  26. Rasmusson, A. G., and Møller, I. M. (1990).Plant Physiol. 94, 1012–1018.Google Scholar
  27. Ribas-Carbo, M., Berry, J. A., Azcón-Bieto, J., and Siedow, J. N. (1994).Biochim. Biophys. Acta 1188, 205–212.Google Scholar
  28. Ribas-Carbo, M., Wiskich, J. T., Berry, J. A., and Siedow, J. N. (1995).Arch. Biochem. Biophys. 317, 156–160.CrossRefPubMedGoogle Scholar
  29. Rich, P. R. (1978).FEBS Lett. 96. 252–256.CrossRefGoogle Scholar
  30. Robinson, S. A., Yakir, D., Ribas-Carbo, M., Giles, L., Osmond, C. B., Siedow, J. N., and Berry, J. A. (1992).Plant Physiol. 100, 1087–1091.Google Scholar
  31. Robinson, S. A., Ribas-Carbo, M., Yakir, D., Giles, L., Reuveni, Y. and Berry, J. A. (1995).Aust. J. Plant Physiol., in press.Google Scholar
  32. Rustin, P., and Queiroz-Claret, C. (1985).Planta 164, 415–422.CrossRefGoogle Scholar
  33. Siedow, J. N., and Moore, A. L. (1993).Biochim. Biophys. Acta 1142, 165–174.Google Scholar
  34. Umbach, A. L., and Siedow, J. N. (1993).Plant Physiol. 103, 845–854.PubMedGoogle Scholar
  35. Umbach, A. L., and Siedow, J. N. (1994).Plant Physiol. 105, S66.Google Scholar
  36. Umbach, A. L., Wiskich, J. T., and Siedow, J. N. (1994).FEBS Lett. 348, 181–184.CrossRefPubMedGoogle Scholar
  37. Vanlerberghe, G. C., and McIntosh, L. (1992a).Plant Physiol. 100, 1846–1851.Google Scholar
  38. Vanlerberghe, G. C., and McIntosh, L. (1992b).Plant Physiol. 100. 115–119.Google Scholar
  39. Vanlerberghe, G. C., Vanlerberghe, A. E., and McIntosh, L. (1994).Plant Physiol. 106, 1503–1510.PubMedGoogle Scholar
  40. Wagner, A. M., Kraak, M. S., van Emmerik, W. A. M., and van der Plas, L. H. W. (1989).Physiol. Plant. 27, 837–845.Google Scholar
  41. Wilson, S. B. (1988).J. Biochem. 249, 301–303.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • David A. Day
    • 1
  • Joseph T. Wiskich
    • 2
  1. 1.Division of Biochemistry and Molecular Biology, and the Cooperative Research Centre in Plant ScienceAustralian National UniversityCanberra
  2. 2.Botany DepartmentUniversity of AdelaideAdelaideAustralia

Personalised recommendations