General Relativity and Gravitation

, Volume 27, Issue 3, pp 319–339

Slicing, threading and parametric manifolds

  • Stuart Boersma
  • Tevian Dray
Article

Abstract

We present a unified treatment of theslicing (3+1) andthreading (1+3) decompositions of spacetime in terms of foliations. It is well-known how to decompose the metric and connection in the slicing picture; this is at the heart of any initial-value problem in general relativity. We describe here the analogous problem in the threading picture, recovering the recent results of Perjés onparametric manifolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perjés, Z. (1993).Nucl. Phys. B 403, 809.CrossRefGoogle Scholar
  2. 2.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).Google Scholar
  3. 3.
    Wald, R. M. (1984).General Relativity (University of Chicago Press, Chicago)Google Scholar
  4. 4.
    Jantzen, R., and Carini, P. (1991). InClassical Mechanics and Relativity: Relationship and Consistency, G. Ferrarese, ed. (Bibliopolis, Naples); Jantzen, R, Carini, P. and Bini, D. (1992).Ann. Phys. (NY) 215, 1.Google Scholar
  5. 5.
    Landau, L., and Lifshitz, E. (1951).The Classical Theory of Fields (Addison-Wesley, Cambridge, Mass.).Google Scholar
  6. 6.
    Møller, C. (1972).The Theory of Relativity (2nd. ed., Clarendon Press, Oxford).Google Scholar
  7. 7.
    Einstein, A., and Bergmann, P. (1938).Ann. of Math. 39, 683, reprinted in Applequist, T., Chodos, A., and Freund, P. G. O., eds. (1987).Introduction to Modern Kaluza-Klein Theories (Addison-Welsey, Menlo Park).MathSciNetGoogle Scholar
  8. 8.
    Cattaneo, C. (1958).Nuovo Cimento 10, 318.Google Scholar
  9. 9.
    Reinhart, B. (1959).Ann. of Math. 69, 119.Google Scholar
  10. 10.
    Kaluza, T. (1921). “On the Unity Problem of Physics,” reprinted in Applequist, T., Chodos, A., and Freund, P. G. O., eds. (1987).Introduction to Modern Kaluza-Klein Theories (Addison-Welsey, Menlo Park).Google Scholar
  11. 11.
    Zel'manov, A. (1956).Soviet Physics Doklady 1, 227.Google Scholar
  12. 12.
    Boersma, Stuart, and Dray, Tevian (1994). “Parametric Manifolds I: Extrinsic Approach,” to appear inJ. Math. Phys. Google Scholar
  13. 13.
    Boersma, Stuart, and Dray, Tevian (1994). “Parametric Manifolds II: Intrinsic Approach,” to appear inJ. Math. Phys. Google Scholar
  14. 14.
    Geroch, R. (1971).J. Math. Phys. 12, 918.CrossRefGoogle Scholar
  15. 15.
    Boersma, Stuart, and Dray, Tevian (1994). “Parametric Manifolds and the Scalar Field,” in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Stuart Boersma
    • 1
  • Tevian Dray
    • 1
  1. 1.Department of MathematicsOregon State UniversityCorvallisUSA
  2. 2.Division of Mathematics and Computer ScienceAlfred UniversityAlfredUSA

Personalised recommendations