Communications in Mathematical Physics

, Volume 128, Issue 2, pp 213–230 | Cite as

Area-preserving diffeomorphisms and higher-spin algebras

  • E. Bergshoeff
  • M. P. Blencowe
  • K. S. Stelle
Article

Abstract

We show that there exists a one-parameter family of infinite-dimensional algebras that includes the bosonicd=3 Fradkin-Vasiliev higher-spin algebra and the non-Euclidean version of the algebra of area-preserving diffeomorphisms of the two-sphereS2 as two distinct members. The non-Euclidean version of the area preserving algebra corresponds to the algebra of area-preserving diffeomorphisms of the hyperbolic spaceS1,1, and can be rewritten as\(\mathop {\lim }\limits_{N \to \infty } su(N,N)\). As an application of our results, we formulate a newd=2+1 massless higher-spin field theory as the gauge theory of the area-preserving diffeomorphisms ofS1,1.

Keywords

Neural Network Statistical Physic Field Theory Complex System Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoppe, J.: M.I.T. PhD thesis, 1982; Aachen preprint PITHA 86/24Google Scholar
  2. 2.
    Fradkin, E. S., Vasiliev, M. A.: Ann. Phys. (NY)77, 63 (1987)Google Scholar
  3. 3.
    Vasiliev, M. A.: Fortschr.Phys.36, 33 (1988)Google Scholar
  4. 4.
    Blencowe, M. P.: Class. Quantum Grav.6, 443 (1989)CrossRefGoogle Scholar
  5. 5.
    Savvidy, G. K.: Yerevan preprint EFI-972 (22) (1987); Phys. Lett.214B, 350 (1988)Google Scholar
  6. 6.
    de Wit, B., Marquard, U., Nicolai, H.: Comm. Math. Phys. (in press)Google Scholar
  7. 7.
    de Wit, B., Hoppe, J., Nicolai, H.: Nucl. Phys.B305, 545 (1988)CrossRefGoogle Scholar
  8. 8.
    Floratos, E., Iliopoulos, J., Tiktopoulos, G.: Phys. Lett.B217, 285 (1989)CrossRefGoogle Scholar
  9. 9.
    Pope, C., Stelle, K. S.: Phys. Lett.B226, 257 (1989)CrossRefGoogle Scholar
  10. 10.
    Mezincescu, L., Townsend, P. K.: Ann. Phys. (NY)160, 406 (1985)CrossRefGoogle Scholar
  11. 11.
    Witten, E.: Nucl. Phys.B311 46 (1988)CrossRefGoogle Scholar
  12. 12.
    Pope, C. N., Townsend, P. K.: Phys. Lett.B225, 245 (1989)CrossRefGoogle Scholar
  13. 13.
    Konstein, S. E., Vasiliev, M. A.: Nucl. Phys.B312, 402 (1989)CrossRefGoogle Scholar
  14. 14.
    Bergshoeff, E., Sezgin, E., Townsend, P. K.: Phys. Lett.B218, 451 (1988)CrossRefGoogle Scholar
  15. 15.
    Roček, M., Lindström, U.: Phys. Lett.B218, 207 (1989)CrossRefGoogle Scholar
  16. 16.
    Sezgin, E., Sokatchev, E.: Chern-Simons theories of symplectic super-diffeomorphisms. ICTP preprint IC/89/72; Sezgin, E.: Gauge theories of infinite dimensional hamiltonian superalgebras, ICTP preprint IC/89/108 and to appear in the Proceedings of the “Strings 89” Superstring workshop, Texas A&M University, March 1989Google Scholar
  17. 17.
    Floratos, E., Iliopoulos, J.: Phys. Lett.201B, 237 (1988); Fairlie, D. B., Fletcher, P., Zachos, C. K.: Phys. Lett.B218, 203 (1989)Google Scholar
  18. 18.
    Bakas, I.: Phys. Lett.B228, 57 (1989)Google Scholar
  19. 19.
    Fateev, V.A., Zamolodchikov, A. B.: Nucl. Phys.B280, 644 (1987)CrossRefGoogle Scholar
  20. 20.
    Cartan, E.: Ann. Sci. École Norm. Sup.26, 93 (1909); Kac, V. G.: Izvestia AN SSSR (ser. mat.)32, 1923 (1968) (English translation: Math. USSR-Izvestia2, 1271 (1968)Google Scholar
  21. 21.
    Bordemann, M., Hoppe, J., Schaller, P.: Phys. Lett.B232, 199 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • E. Bergshoeff
    • 1
  • M. P. Blencowe
    • 2
  • K. S. Stelle
    • 2
  1. 1.Theorey DivisionCERNGeneva 23Switzerland
  2. 2.The Blackett LaboratoryImperial CollegeLondonEngland

Personalised recommendations