Analysis of the Einstein-Podolsky-Rosen experiment by relativistic quantum logic

  • P. Mittelstaedt
  • E. W. Stachow
Article

Abstract

The EPR experiment is investigated within the abstract language of relativistic quantum physics (relativistic quantum logic). First we show that the principles of reality (R) and locality (L) contradict the validity principle (Q) of quantum physics. A reformulation of this argument is then given in terms of relativistic quantum logic which is based on the principlesR andQ. It is shown that the principleL must be replaced by a convenient relaxation ¯L, by which the contradiction can be eliminated. On the other hand this weak locality principle ¯L does not contradict Einstein causality and is thus in accordance with special relativity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspect, A., Grangier, P., and Roger, G. (1981). Experimental tests of realistic local theories via Bell's theorem,Physical Review Letters,47, 460–467.CrossRefGoogle Scholar
  2. Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox,Physics (New York) 1, 195–200.Google Scholar
  3. Bohm, D. (1951).Quantum Theory. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  4. Burghardt, F. J. (1980). Modal quantum logic and its dialogic foundation,International Journal of Theoretical Physics,19, 843–866.CrossRefGoogle Scholar
  5. Clauser, J. F. (1976). Experimental investigation of a polarization correlation anomaly,Physical Review Letters,36, 1223–1226.CrossRefGoogle Scholar
  6. Clauser, J. F., and Shimony, A. (1978). Bell's theorem: experimental tests and implications,Reports on Progress in Physics,41, 1881–1927.CrossRefGoogle Scholar
  7. Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum mechanical description of physical reality be considered complete?,Physical Review,47, 777–780.CrossRefGoogle Scholar
  8. Freedman, S. J., and Clauser, J. F. (1972). Experimental test of local hidden-variable theories,Physical Review Letters,28, 938–941.CrossRefGoogle Scholar
  9. Fry, E. S., and Thompson, R. C. (1976). Experimental test of local hidden-variable theories,Physical Review Letters,37, 465–468.CrossRefGoogle Scholar
  10. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space Time, p. 183. Cambridge University Press, Cambridge.Google Scholar
  11. Kasday, L. (1971). Experimental test of quantum predictions for widely separated photons, inProceedings of the International School of Physics “Enrico Fermi.” Course 49: Foundations of quantum mechanics, B. d'Espagnat, ed., pp. 195–210. Academic Press, New York.Google Scholar
  12. Kasday, L., Ullman, J., and Wu, C. S. (1970). The Einstein-Podolsky-Rosen argument: positron annihilation experiment,Bulletin of the American Physical Society,15, 586.Google Scholar
  13. Kocher, C. A., and Commins, E. D. (1967). Polarization correlation of photons emitted in an atomic cascade,Physical Review Letters,18, 575–577.CrossRefGoogle Scholar
  14. Lamehi-Rachti, M, and Mittig, W. (1976). Quantum mechanics and hidden variables: A test of Bell's inequality by the measurement of the spin correlation in low energy proton-proton scattering,Physical Review D,14, 1543–2555.CrossRefGoogle Scholar
  15. Mittelstaedt, P. (1978).Quantum Logic. D. Reidel, Dordrecht, Holland.Google Scholar
  16. Mittelstaedt, P. (1979). The modal logic of quantum logic,Journal of Philosophical Logic,8, 479–504.CrossRefGoogle Scholar
  17. Mittelstaedt, P. (1982). Relativistic quantum logic,International Journal of Theoretical Physics (to be published).Google Scholar
  18. Mittelstaedt, P., and Stachow, E. W. (1978). The principle of excluded middle in quantum logic,Journal of Philosophical Logic,7, 181–208.CrossRefGoogle Scholar
  19. Rasiowa, H. (1974).An Algebraic Approach to Non-Classical Logics, p. 44. North-Holland Publishing, Amsterdam.Google Scholar
  20. Schlieder, S. (1968). Einige Bemerkungen zur Zustandsänderung...,Communications in Mathematical Physics,7, 305–331.CrossRefGoogle Scholar
  21. Stachow, E. W. (1976). Completeness of quantum logic,Journal of Philosophical Logic,5, 237–280.CrossRefGoogle Scholar
  22. Stachow, E. W. (1978). Quantum logical calculi and lattice structures,Journal of Philosophical Logic,7, 347–386.CrossRefGoogle Scholar
  23. Stachow, E. W. (1979). Operational quantum probability, in Abstracts of the 6th International Congress of Logic, Methodology and Philosophy of Science (1979), Bönecke Druck, Clauthal-Z., West Germany.Google Scholar
  24. Stachow, E. W. (1980). Logical foundation of quantum mechanics,International Journal of Theoretical Physics,19, 251–304.CrossRefGoogle Scholar
  25. Stachow, E. W. (1981a). The prepositional language of quantum physics, inInterpretations and Foundations of Quantum Theory, Neumann, H., ed., Grundlagen der exakten Naturwissenschaften, Vol. 5, pp. 95–108. Wissenschaftsverlag, Bibliographisches Institut, Mannheim, West Germany.Google Scholar
  26. Stachow, E. W. (1981b). Sequential quantum logic, inCurrent Issues in Quantum Logic, Beltrametti, E., and van Fraasen, B. C., eds., Ettore Majorana international science series, Vol. 8, pp. 173–192. Plenum Press, New York.Google Scholar
  27. Stachow, E. W. (1981c). Der quantenlogische Wahrscheinlichkeitskalkül, inGrundlagenprobleme der modernen Physik, Nitsch, J., Pfarr, J., and Stachow, E. W., eds. Wissenschaftsverlag, Bibliographisches Institut, Mannheim, West Germany.Google Scholar
  28. Wigner, E. P. (1970). On hidden variables and quantum mechanical probabilities,American Journal of Physics,38, 1005–1009.CrossRefGoogle Scholar
  29. Wu, C. S., and Shaknov, J. (1950). The angular correlation of scattered annihilation radiation,Physical Review,77, 136.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • P. Mittelstaedt
    • 1
  • E. W. Stachow
    • 1
  1. 1.Institut für Theoretische Physik, der Universität zu KölnKöln 41West Germany

Personalised recommendations