Skip to main content
Log in

Fermion current algebras and Schwinger terms in (3+1)-dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the restricted linear group in infinite dimensions modeled by the Schatten class of rank 2p=4 which contains the (3+1)-dimensional analogs of the loop groups and is closely related to Yang-Mills theory with fermions in (3+1)-dimensions. We give an alternative to the construction of the “highest weight” representation of this group found by Mickelsson and Rajeev. Our approach is close to quantum field theory, with the elements of this group regarded as Bogoliubov transformations for fermions in an external Yang-Mills field. Though these cannot be unitarily implemented in the physically relevant representation of the fermion field algebra, we argue that they can be implemented by sesquilinear forms, and that there is a (regularized) product of forms providing an appropriate group structure. On the Lie algebra level, this gives an explicit, non-perturbative construction of fermion current algebras in (3+1) space-time dimensions which explicity shows that the “wave function renormalization” required for a consistent definition of the currents and their Lie bracket naturally leads to the Schwinger term identical with the Mickelsson-Rajeev cocycle. Though the explicit form of the Schwinger term is given only for the casep=2, our arguments apply also to the restricted linear groups modeled by Schatten classes of rank 2p=6,8,...corresponding to current algebras in (d+1)-dimensions,d=5,7,...

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • [BR2] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. Vol. 2. Berlin: Springer, (1981)

    Google Scholar 

  • [C] Carey, A.L.: The origin of three-cocycles in quantum field theory. Phys. Lett.194B, 267, (1987)

    Google Scholar 

  • [CR] Carey, A.L., Ruijsenaars, S.N.M.: On fermion gauge groups, current algebras and Kac-Moody algebras. Acta Appl. Mat.10, 1 (1987)

    Google Scholar 

  • [CHOB] Carey, A.L., Hurst, C.A., O'Brien, D.M.: Automorphisms of the canonical anticommutator relations and index theory. J. Funct. Anal.48, 360 (1982)

    Google Scholar 

  • [F] Faddeey, L.D.: Operator anomaly for the Gauss law. Phys. Lett.145B, 81 (1984)

    Google Scholar 

  • [FS] Faddeev, L.D., Shatiashvili, S.L.: Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies. Theor. Math. Phys.60, 206 (1984)

    Google Scholar 

  • [FT] Fujii, K., Tanaka, M.: Universal Schwinger cocycle and current algebras in (D+1)-dimensions: Geometry and physics. Commun. Math. Phys.129, 267 (1990)

    Google Scholar 

  • [GL] Grosse, H., Langmann, E.: The geometric phase and the Schwinger term in some models. Int. J. Mod. Phys.A21, 5045 (1992)

    Google Scholar 

  • [H] herstein, I.N.: Topics in Algebra. New York: John Wiley, 1975

    Google Scholar 

  • [J] Jackiw, R.: Topological investigations of quantized gauge theories. In: Relativity, Groups and Topology II. Les Houches 1983, DeWitt, B.S., Stora, R. (eds.), Amsterdam: North Holland, (1984)

    Google Scholar 

  • [K] Kato, T.: Perturbation theory for linear operators. Grundlehren der mathematischen Wissenschaften132, Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  • [HK] Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.7, 848 (1964)

    Google Scholar 

  • [KR] Kac, V.G., Raina, A.K.: Highest weight representations of infinite dimensional Lie algebras. Singapore: World Scientific, 1987

    Google Scholar 

  • [KS] Klaus, M., Scharf, G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta50, 779 (1977)

    Google Scholar 

  • [L1] Langmann, E.: On Schwinger terms in (3+1)-dimensions, Proc. of the “XXVII Karpacs Winter School of Theoretical Physics”, Karpacz 1991, Singapore: World Scientific, 1991

    Google Scholar 

  • [L2] Langmann, E.: Boson and fermion current algebras in higher dimensions. Proc. of the symposium “Topological and Geometrical Methods in Field Theory”, Turku, 1991, Mickelsson, J., Pekonen, O. (eds.), Singapore: World Scientific, 1992

    Google Scholar 

  • [L3] Langmann, E.: Cocycles for boson and fermion Bogoliubov Transformations, J. Math. Phys. (in press)

  • [LS1] Langmann, E., Semenoff, G.W. Gauge theories on a cylinder. Phys. Lett.B296, 117 (1992)

    Google Scholar 

  • [LS2] Langmann, E., Semenoff, G.W.: Gribov ambiguity and non-trivial vacuum structure of gauge theories on a cylinder. Phys. Lett.B303, 303 (1993)

    Google Scholar 

  • [Lu] Lundberg, L.-E.: Qausi-free “second quantization”. commun. Math. Phys.50, 103 (1976)

    Google Scholar 

  • [M1] Mickelsson, J.: Current algebra representations for 3+1 dimensional Dirac-Yang-Mills theory. Commun. Math. Phys.117, 261 (1988)

    Google Scholar 

  • [M2] Mickelsson, J.: Current Algebras and Groups. Plenum Monographs in Nonlinear Physics, London: Plenum Press, 1989

    Google Scholar 

  • [M3] Mickelsson, J.: Commutator anomalies and the Fock bundle. Commun. Math. Phys.127, 285 (1990)

    Google Scholar 

  • [M4] Mickelsson, J.: The quantization of a Yang-Mills system with fermions in (1+1) dimensions. Phys. Lett.B242, 217 (1990)

    Google Scholar 

  • [M5] Mickelsson, J.: Bose-Fermi correspondence, Schwinger terms, and Fock-bundles in 3+1 dimensions. In: Proc. of the symposium “Topological and Geometrical Methods in Field Theory” Turku, 1991, Mickelsson, J., Pekonen, O. (eds.), Singapore: World Scientific, 1992

    Google Scholar 

  • [M6] Mickelsson, J.: Quantum mechanical time evolution for chiral fermions in an external field. In: Proc. of the conference “Differential geometric methods in theoretical physics”. New York, 1991

  • [MR] Mickelsson, J., Rajeev, S.G.: Current algebras ind+1-dimensions and determinant bundles over infinite dimensional Grassmannians. Commun. Math. Phys.116, 400 (1988)

    Google Scholar 

  • [P] Pickrell D.: On the Mickelsson-Faddeev extension and unitary representations. Commun. Math. Phys.123, 617 (1989)

    Google Scholar 

  • [PS] Pressly, A., Segal, G.: Loop Groups. Oxford: Oxford Math. Monographs, 1986

  • [RS1] Reed, R., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. New York: Academic Press, (1968)

    Google Scholar 

  • [RS2] Reed, R., Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness. New York: Academic Press, 1975

    Google Scholar 

  • [R1] Ruijsenaars, S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles. J. Math. Phys.18, 517 (1977)

    Google Scholar 

  • [R2] Ruijsenaars, S.N.M.: Integrable quantum field theories and Bogoliubov transformations. Ann. Phys.132, 328 (1981)

    Google Scholar 

  • [R3] Ruijsenaars, S.N.M.: The Wightman axioms for the fermionic Federbush model. Commun. Math. Phys.87, 181 (1982)

    Google Scholar 

  • [R4] Ruijsenaars, S.N.M.: Index formulas for generalized Wiener-Hopf operators and bosonfermion correspondence in 2N dimensions. Commun. Math. Phys.124, 553 (1989)

    Google Scholar 

  • [S] Simon, B.: Trace Ideals and Their Applications. Cambridge: Cambridge University Press, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Yu. Reshetikhin

Erwin Schrödinger-fellow, supported by the “Fonds zur Förderung der wissenschaftlichen Forschung” under the contract Nr. J0789-PHY

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langmann, E. Fermion current algebras and Schwinger terms in (3+1)-dimensions. Commun.Math. Phys. 162, 1–32 (1994). https://doi.org/10.1007/BF02105184

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02105184

Keywords

Navigation