General Relativity and Gravitation

, Volume 27, Issue 5, pp 475–493 | Cite as

Test theories of special relativity

  • Yuan Zhong Zhang


We review the Edwards transformation, and investigate the Robertson transformation and the Mansouri-Sexl (ms) transformation. It is shown that thems transformation is a generalization of the Robertson transformation, just as the Edwards transformation is a generalization of the Lorentz transformation. In other words, thems transformation differs from the Robertson transformation by a directional parameterq, just as is the case for the Edwards and Lorentz transformations. So thems transformation predicts the same observable effects as the Robertson transformation, just as the Edwards transformation does with the Lorentz transformation. This is to say that the directional parameterq representing the anisotropy of the one-way speed of light is not observable in any physical experiment. The observable difference between thems (Robertson) transformation(s) and the Lorentz transformation is caused by the anisotropy of the two-way speed of light. Therefore a physical test of thems transformation is a test of the two-way speed of light, but not of the one-way speed of light.


Anisotropy Differential Geometry Physical Experiment Special Relativity Observable Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Einstein, A. (1905).Ann. Phys. (Leipzig) 17, 891.Google Scholar
  2. 2.
    Robertson, H. P. (1949).Rev. Mod. Phys. 21, 378.Google Scholar
  3. 3.
    Reichenbach, H. (1958).The Philosophy of Space and Time (Dover Publications, Inc., New York).Google Scholar
  4. 4.
    Grunbaum, A. (1960). InPhilosophy of Science, A. Danto and S. Morgenbesser, eds. (Meridian Books, New York).Google Scholar
  5. 5.
    Ruderfer, M. (1960).Proc. IRE 48, 1661.Google Scholar
  6. 6.
    Edwards, W. F. (1963).Am. J. Phys. 31, 482.Google Scholar
  7. 7.
    Winnie, J. A. (1970).Phil. Sci. 37, 81;37, 223.Google Scholar
  8. 8.
    Mansouri, R., Sexl, R. U. (1977).Gen. Rel. Grav. 8, 497,515,809.Google Scholar
  9. 9.
    Bertotti, B. (1979).Radio Sci. 14, 621.Google Scholar
  10. 10.
    MacArthur, D. W. (1986).Phys. Rev. A33, 1.Google Scholar
  11. 11.
    Haugan, M. P., Will, C. M. (1987).Physics Today 40, 69.Google Scholar
  12. 12.
    Abolghasem, G., Khajehpour, M. R. H., Mansouri, R. (1988).Phys. Lett. A132, 310.Google Scholar
  13. 13.
    Riis, E., et al. (1988).Phys. Rev. Lett. 60, 81; (1989).ibid. 62, 842.Google Scholar
  14. 14.
    Bay, Z., White, J. A. (1989).Phys. Rev. Lett. 62, 841.Google Scholar
  15. 15.
    Gabriel, M. D., Haugan, M. P. (1990).Phys. Rev. D 41, 2943.Google Scholar
  16. 16.
    Krisher, T. P., et al. (1990).Phys. Rev. D 42, 731.Google Scholar
  17. 17.
    Will, C. M. (1992).Phys. Rev. D 45, 403.Google Scholar
  18. 18.
    Zhang, Y. Z. (1979/1994).Experimental Tests of Special Relativity (Science Press, Beijing).Google Scholar
  19. 19.
    Römer, O. (1676).Mem. Acad. 10, 575; Karlov, L. (1970).Austral. J. Phys. 23, 243.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Yuan Zhong Zhang
    • 1
  1. 1.Institute of Theoretical PhysicsAcademia SinicaBeijingP.R. China

Personalised recommendations