General Relativity and Gravitation

, Volume 28, Issue 5, pp 581–600 | Cite as

On Gravity's role in Quantum State Reduction

  • Roger Penrose


The stability of a quantum superposition of two different stationary mass distributions is examined, where the perturbing effect of each distribution on the space-time structure is taken into account, in accordance with the principles of general relativity. It is argued that the definition of the time-translation operator for the superposed space-times involves an inherent ill-definedness, leading to an essential uncertainty in the energy of the superposed state which, in the Newtonian limit, is proportional to the gravitational self-energyEΔ of the difference between the two mass distributions. This is consistent with a suggested finite lifetime of the order of ħ/EΔ for the superposed state, in agreement with a certain proposal made by the author for a gravitationally induced spontaneous quantum state reduction, and with closely related earlier suggestions by Diósi and by Ghirardiet al.


General Relativity Quantum State Mass Distribution Differential Geometry State Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anandan, J. (1994).Gen. Rel. Grav. 26, 125.Google Scholar
  2. 2.
    Anandan, J. (1995). “Gravitational phase operator and cosmic strings”. To appear inPhys. Rev. D. Google Scholar
  3. 3.
    Bell, J. S. (1990).Physics World 3, 33.Google Scholar
  4. 4.
    Bialynicki-Birula, I., and Mycielski, J. (1976).Ann. Phys. (NY) 100, 62.CrossRefGoogle Scholar
  5. 5.
    Bohm, D. (1952).Phys. Rev. 85, 166.CrossRefGoogle Scholar
  6. 6.
    Bohm, D., and Hiley, B. (1994).The Undivided Universe (Routledge, London).Google Scholar
  7. 7.
    Cartan, É. (1923,1924). “Sur les variétés à connexion affine et la théorie de la relativité generalisée”,Ann. École Norm. Sup. 40, 325,41, 1.Google Scholar
  8. 8.
    Christian, J. (1995). “Definite events in Newton-Cartan quantum gravity” Oxford University preprint.Google Scholar
  9. 9.
    de Broglie, I. (1956).Tentative d'Interpretation Causale et Nonlineaire de la Mechanique Ondulatoire (Gauthier-Villars, Paris).Google Scholar
  10. 10.
    DeWitt, B. S., and Graham, R. D. (eds.) (1973).The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton).Google Scholar
  11. 11.
    Diósi, L. (1989).Phys. Rev. A 40, 1165.CrossRefGoogle Scholar
  12. 12.
    Ehlers, J. (1991). InClassical Mechanics and Relativity: Relationship and Consistency (Int. Conf. in memory of Carlo Cataneo, Elba 1989), G. Ferrarese, ed. (Monographs and Textbooks in Physical Science, Lecture Notes 20, Bibliopolis, Naples).Google Scholar
  13. 13.
    Everett, H. (1957).Rev. Mod. Phys. 29, 454.CrossRefGoogle Scholar
  14. 14.
    Friedrichs, K. (1927).Math. Ann. 98, 566.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gell-Mann, M., and Hartle, J. B. (1993).Phys. Rev. D 47, 3345.Google Scholar
  16. 16.
    Ghirardi, G. C., Rimini, A. and Weber, T. (1986).Phys. Rev. D 34, 470.Google Scholar
  17. 17.
    Ghirardi, G. C., Grassi, R., and Rimini, A. (1990).Phys. Rev. A 42, 1057.Google Scholar
  18. 18.
    Griffiths, R. (1984).J. Stat. Phys. 36, 219.CrossRefGoogle Scholar
  19. 19.
    Haag, R. (1992).Local Quantum Physics: Fields, Particles, Algebras (Springer-Verlag, Berlin).Google Scholar
  20. 20.
    Károlyházy, F. (1966).Nuovo Cimento A 42, 390.Google Scholar
  21. 21.
    Károlyházy, F. (1974).Magyar Fizikai Polyoirat 12, 24.Google Scholar
  22. 22.
    Károlyházy, F., Frenkel, A., and Lukács, B. (1986). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p. 109.Google Scholar
  23. 23.
    Kibble, T. W. B. (1981). InQuantum Gravity 2: a Second Oxford Symposium, C. J. Isham, R. Penrose and D. W. Sciama, eds. (Oxford University Press, Oxford), p.63.Google Scholar
  24. 24.
    Komar, A. B. (1969).Int. J. Theor. Phys. 2, 157.CrossRefGoogle Scholar
  25. 25.
    Omnès, R. (1992).Rev. Mod. Phys. 64, 339.CrossRefGoogle Scholar
  26. 26.
    Page, D. N., and Geilker, C. D. (1981).Phys. Rev. Lett. 47, 979.CrossRefGoogle Scholar
  27. 27.
    Pearle, P. (1985). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p.84.Google Scholar
  28. 28.
    Pearle, P. (1989).Phys. Rev. A 39, 2277.Google Scholar
  29. 29.
    Pearle, P., and Squires, E. J. (1995). “Gravity, energy conservation and parameter values in collapse models”. Durham University preprint DTP/95/13.Google Scholar
  30. 30.
    Penrose, R. (1981). InQuantum Gravity 2: A Second Oxford Symposium, C. J. Isham, R. Penrose and D. W. Sciama, eds. (Oxford University Press, Oxford), p.244.Google Scholar
  31. 31.
    Penrose, R. (1986). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p.129.Google Scholar
  32. 32.
    Penrose, R. (1987). In300 Years of Gravity, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge), p. 17.Google Scholar
  33. 33.
    Penrose, R. (1989).The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford University Press, Oxford).Google Scholar
  34. 34.
    Penrose, R. (1993). InGeneral Relativity and Gravitation 13. Part 1: Plenary Lectures, R. J. Gleiser, C. N. Kozameh and O. M. Moreschi, eds. (IOPP, Bristol/Philadelphia), p. 179.Google Scholar
  35. 35.
    Penrose, R. (1994). InFundamental Aspects of Quantum Theory, J. Anandan and J. L. Safko, eds. (World Scientific, Singapore), p.238.Google Scholar
  36. 36.
    Penrose, R. (1994).Shadows of the Mind; An Approach to the Missing Science of Consciousness (Oxford University Press, Oxford).Google Scholar
  37. 37.
    Percival, I. C. (1995).Proc. R. Soc. Lond. A 451, 503.Google Scholar
  38. 38.
    Squires, E. (1990).Phys. Lett. A 145, 67.Google Scholar
  39. 39.
    Squires, E. (1992).Found. Phys. Lett. 5, 279.CrossRefGoogle Scholar
  40. 40.
    Trautman, A. (1965). InLectures on General Relativity (Brandeis 1964 Summer Inst. on Theoretical Physics), vol. I, by A. Trautman, F. A. E. Pirani and H. Bondi (Prentice-Hall, Englewood Cliffs, NJ), p.7.Google Scholar
  41. 41.
    Weinberg, S. (1989).Phys. Rev. Lett. 62, 485.CrossRefGoogle Scholar
  42. 42.
    Wigner, E. P. (1961). InThe Scientist Speculates, I. J. Good, ed. (Heinemann, London); reprinted in E. Wigner (1967).Symmetries and Reflections (Indiana University Press, Bloomington) and in 1983 in QuantumTheory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton).Google Scholar
  43. 43.
    Zurek, W. H. (1991).Physics Today 44, 36.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Roger Penrose
    • 1
    • 2
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Center for Gravitational Physics and GeometryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations