Advertisement

General Relativity and Gravitation

, Volume 28, Issue 5, pp 565–572 | Cite as

String theory and cosmology

  • M. C. Bento
  • O. Bertolami
Article

Abstract

We discuss the main cosmological implications of considering string-loop effects and a potential for the dilaton in the lowest order string effective action. Our framework is based on the effective model arising from regarding homogeneous and isotropic dilaton, metric and Yang-Mills field configurations. The issues of inflation, entropy crisis and the Polonyi problem as well as the problem of the cosmological constant are discussed.

Keywords

Entropy String Theory Lower Order Cosmological Constant Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bento, M. C., and Bertolami, O. (1995).Class. Quant. Grav. 12, 1919.CrossRefGoogle Scholar
  2. 2.
    Tseytlin, A. A., and Vafa, C. (1992).Nucl. Phys. B 372, 443.CrossRefGoogle Scholar
  3. 3.
    Binétruy, P., and Gaillard, M. K. (1986).Phys. Rev. D 34, 3069; Brustein, R., and Steinhardt, P. J. (1993).Phys. Lett. B 302, 196.Google Scholar
  4. 4.
    Weinberg, S. (1989).Rev. Mod. Phys. 61, 1.CrossRefGoogle Scholar
  5. 5.
    Damour, T., and Polyakov, A. M. (1994).Nucl. Phys. B 423, 532.CrossRefGoogle Scholar
  6. 6.
    Bento, M. C., and Bertolami, O. (1994).Phys. Lett. B 336, 6.Google Scholar
  7. 7.
    Bento, M. C., Bertolami, O., and Sá, P. M. (1991).Phys. Lett. B 262, 11.Google Scholar
  8. 8.
    Bento, M. C., and Bertolami, O. (1995). “Cosmological Solutions of Higher-Curvature String Effective Theories with Dilatons.” Preprint CERN-TH/95-63, DFTT 19/95, to appear inPhys. Lett. B.Google Scholar
  9. 9.
    Witten, E. (1985).Phys. Lett. B 155, 151; (1986).Nucl. Phys. B 268, 79.Google Scholar
  10. 10.
    Bertolami, O., Mourão, J. M., Picken, R. F., and Volobujev, I. P. (1991).Int. J. Mod. Phys. A 6, 4149.Google Scholar
  11. 11.
    Moniz, P. V., Mourão, J. M., and Sá, P. M. (1993).Class. Quant. Grav. 10, 517.CrossRefGoogle Scholar
  12. 12.
    Bento, M. C., Bertolami, O., Moniz, P. V., Mourão, J. M., and Sá, P. M. (1993).Class. Quant. Grav. 10, 285.CrossRefGoogle Scholar
  13. 13.
    Yamamoto, K. (1986).Phys. Lett. B 168, 341; Bertolami, O., and Ross, G. G. (1987).Phys. Lett. B 183, 163.Google Scholar
  14. 14.
    Bento, M. C., Bertolami, O., and P. M. Sá, (1992).Mod. Phys. Lett. A 7, 911.Google Scholar
  15. 15.
    Coughlan, G. D., Fischler, W., Kolb, E. W., Raby, S., and Ross, G. G. (1983).Phys. Lett. B 131, 59; Coughlan, G. D., Holman, R., Ramond, P., and Ross, G. G. (1984).Phys. Lett. B 140, 44; Goncharov, A. S., Linde, A. D., and Vysotsky, M. I. (1984).Phys. Lett. B 147, 279; Bertolami, O., and Ross, G. G. (1986).Phys. Lett. B 171, 46.Google Scholar
  16. 16.
    Bertolami, O. (1988).Phys. Lett. B 209, 277.Google Scholar
  17. 17.
    de Carlos, B., Casas, J. A., Quevedo, F., and Roulet, E. (1993).Phys. Lett. B 318, 447.Google Scholar
  18. 18.
    Banks, T., Kaplan, D. B., and Nelson, A. E. (1994).Phys. Rev. D 49, 779.Google Scholar
  19. 19.
    Moore, G. (1987).Nucl. Phys. B 293, 139.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. C. Bento
    • 1
  • O. Bertolami
    • 1
    • 2
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Sezione TorinoINFNTurinItaly

Personalised recommendations