Advertisement

Journal of Soviet Mathematics

, Volume 28, Issue 4, pp 513–524 | Cite as

Classical r-matrices and the method of orbits

  • M. A. Semenov-Tyan-Shanskii
Article

Abstract

The geometric meaning of the classicalr-matrices of Yang-Baxter is discussed.

Keywords

Geometric Meaning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. K. Sklyanin, “Quantum version of the method of the inverse scattering problem,” J. Sov. Math.,19, No. 5 (1982).Google Scholar
  2. 2.
    L. D. Faddeev, “Quantum completely integrable models of field theory,” Preprint LOMI P-2-79, Leningrad (1979).Google Scholar
  3. 3.
    P. P. Kulish and E. K. Sklyanin, “Solutions of the Yang-Baxter equation,” J. Sov. Math.,19, No. 5 (1982).Google Scholar
  4. 4.
    A. A. Belavin and V. G. Drinfel'd, “Solutions of the classical Yang-Baxter equation for simple Lie algebras,” Funkts. Anal.,16, No. 3, 1–29 (1982).Google Scholar
  5. 5.
    M. Adler, “On a trace functional for formal pseudodifferential operators and the symplectic structure for Korteweg-de Vries type equations,” Inventiones Math.,50, 219–248 (1979).Google Scholar
  6. 6.
    B. Kostant, “Quantization and representation theory,” in: Proc. Research Symposium on Representations of Lie Groups, Oxford, 1977, London Math. Soc. Lecture Notes Series,34 (1979).Google Scholar
  7. 7.
    A. G. Reiman and M. A. Semenov-Tyan-Shanskii, “Algebras of flows and nonlinear partial differential equations,” Dokl. Akad. Nauk SSSR,251, No. 6 (1980).Google Scholar
  8. 8.
    A. G. Reyman and M. A. Semenov-Tian-Shansky, “Reduction of Hamiltonian systems, affine Lie algebras, and Lax equations, II,” Inventiones Math.,63, 423–432 (1981).Google Scholar
  9. 9.
    A. G. Reiman, “Integrable Hamiltonian systems associated with graded Lie algebras,” J. Sov. Math.,19, No. 5 (1982).Google Scholar
  10. 10.
    V. E. Zakharov and A. B. Shabat, “Integration of nonlinear equations of mathematical physics by the method of the inverse scattering problem. II,” Funkts. Anal.,13, No. 3, 13–22 (1979).Google Scholar
  11. 11.
    E. Date et al., “Transformation groups for soliton equations,” RIMS Preprint-394, Kyoto (1982).Google Scholar
  12. 12.
    A. V. Mikhailov, “The reduction problem and the inverse scattering method,” Physica D,3D, 73–117 (1981).Google Scholar
  13. 13.
    A. G. Reiman and M. A. Semenov-Tyan-Shanskii, “Family of Hamiltonian structures, hierarchy of Hamiltonians and reduction for first-order matrix differential operators,” Funkts. Anal.,11, No. 2, 77–78 (1980).Google Scholar
  14. 14.
    V. G. Drinfel'd and V. V. Sokolov, Dokl. Akad. Nauk SSSR,258, 11–14 (1981).Google Scholar
  15. 15.
    A. G. Reyman and M. A. Semenov-Tian-Shansky, “Reduction of Hamiltonian systems...I,” Inventiones Math.,54, 81–100 (1979).Google Scholar
  16. 16.
    S. Lie, Theorie der Transformationsgruppen, III,” Chap. 25, Sec. 115, Leipzig (1893).Google Scholar
  17. 17.
    L. D. Faddeev, Proc. l'Ecole d'Ete de Physique Theorique, Les Houches, North Holland (1982).Google Scholar
  18. 18.
    E. K. Sklyanin, “Algebraic structures associated with the Yang-Baxter equation,” Funkts. Analiz,16, No. 4, 27–34 (1982).Google Scholar
  19. 19.
    V. G. Drinfel'd, “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations,” Dokl. Akad. Nauk SSSR,267, No. 5, 1035–1041 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. A. Semenov-Tyan-Shanskii

There are no affiliations available

Personalised recommendations