Communications in Mathematical Physics

, Volume 178, Issue 1, pp 61–82 | Cite as

On the classification of quantum Poincaré groups

  • P. Podleś
  • S. L. Woronowicz


Using the general theory of [10], quantum Poincaré groups (without dilatations) are described and investigated. The description contains a set of numerical parameters which satisfy certain polynomial equations. For most cases we solve them and give the classification of quantum Poincaré groups. Each of them corresponds to exactly one quantum Minkowski space. The Poincaré series of these objects are the same as in the classical case. We also classify possibleR-matrices for the fundamental representation of the group.


Neural Network Statistical Physic Complex System General Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaichian, M., Demichev, A.P.: Quantum Poincaré group, Phys. Lett.B304, 220–224 (1993) Cf. also Schirrmacher, A.: Varieties on quantized spacetime. In: Symmetry methods in physics. A.N. Sissakin et al. (eds.), vol. 2, Moscow: Dubna 1994, pp. 463–470Google Scholar
  2. 2.
    Dobrev, V.K.: Canonicalq-deformations of noncompact Lie (super-) algebras. J. Phys. A: Math. Gen.26, 1317–1334 (1993)Google Scholar
  3. 3.
    Kondratowicz, P., Podleś, P.: Irreducible representations of quantumSL q(2) groups at roots of unity. hep-th 9405079Google Scholar
  4. 4.
    Lukierski, J., Nowicki, A., Ruegg, H.: New quantum Poincaré algebra andk-deformed field theory. Phys. Lett.B293, 344–352 (1992); Zakrzewski, S.: Quantum Poincaré group related to thek-Poincaré algebra. J. Phys. A.: Math. Gen.27, 2075–2082 (1994); Cf. also Lukierski, J., Nowicki, A., Ruegg, H., Tolstoy, V.N.:q-deformation of Poincaré algebra. Phys. Lett.B264, 331–338 (1991)Google Scholar
  5. 5.
    Majid, S.: Braided momentum in theq-Poincaré group. J. Math. Phys.34, 2045–2058 (1993)Google Scholar
  6. 6.
    Ogievetsky, O., Schmidke, W.B., Wess, J., Zumino, B.:q-Deformed Poincaré algebra. Commun. Math. Phys.150, 495–518 (1992)Google Scholar
  7. 7.
    Podleś, P.: Complex quantum groups and their real representations. Publ. RIMS, Kyoto University28, 709–745 (1992)Google Scholar
  8. 8.
    Podleś, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381–431 (1990)Google Scholar
  9. 9.
    Podleś, P., Woronowicz, S.L.: Inhomogeneous quantum groups. Submitted to Proceedings of First Caribbean School of Mathematics and Theoretical Physics in Guadeloupe, 1993Google Scholar
  10. 10.
    Podleś, P., Woronowicz, S.L.: On the structure of inhomogeneous quantum groups. hep-th 9412058, UC Berkeley preprint PAM-631Google Scholar
  11. 11.
    Schlieker, M., Weich, W., Weixler, R.: Inhomogeneous quantum groups. Z. Phys. C.-Particles and Fields53, 79–82 (1992); Inhomogeneous quantum groups and their universal enveloping algebras. Lett. Math. Phys.27, 217–222 (1993)Google Scholar
  12. 12.
    Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys.111, 613–665 (1987)Google Scholar
  13. 13.
    Woronowicz, S.L.: New quantum deformation ofSL(2, C). Hopf algebra level. Rep. Math. Phys.30(2), 259–269 (1991).Google Scholar
  14. 14.
    Woronowicz, S.L., Zakrzewski, S.: Quantum deformations of the Lorentz group. The Hopf *-algebra level. Comp. Math.90, 211–243 (1994)Google Scholar
  15. 15.
    Zakrzewski, S.: Geometric quantization of Poisson groups-diagonal and soft deformations. Contemp. Math.179, 271–285 (1994)Google Scholar
  16. 16.
    Zakrzewski, S.: Poisson Poincaré groups. Submitted to Proceedings of Winter School of Theoretical Physics, Karpacz 1994, hep-th 9412099 (Some errors are corrected in the last reference); Cf. also Poisson homogeneous spaces. Submitted to Proceedings of Winter School of Theoretical Physics, Karpacz 1994, hep-th 9412101; Poisson structures on the Poincaré group, in preparationGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • P. Podleś
    • 1
  • S. L. Woronowicz
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Mathematical Methods in Physics, Faculty of PhysicsUniversity of WarsawWarszawaPoland

Personalised recommendations