Advertisement

Journal of Soviet Mathematics

, Volume 28, Issue 1, pp 51–90 | Cite as

Nonlinear equations and elliptic curves

  • I. M. Krichever
Article

Abstract

The main ideas of global “finite-zone integration” are presented, and a detailed analysis is given of applications of the technique developed to some problems based on the theory of elliptic functions. In the work the Peierls model is integrated as an important application of the algebrogeometric spectral theory of difference operators.

Keywords

Detailed Analysis Main Idea Nonlinear Equation Difference Operator Important Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. I. Akhiezer, “A continual analogue of orthogonal polynomials on a system of intervals,” Dokl. Akad. Nauk SSSR,141, No. 2, 263–266 (1961).Google Scholar
  2. 2.
    H. Bateman and E. Erdelyi, Higher Transcendental Functions [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    E. D. Belokolos, “The Peierls-Frolich problems and finite-zone potentials. I,” Teor. Mat. Fiz.,45, No. 2, 268–280 (1980).Google Scholar
  4. 4.
    E. D. Belokolos, “The Peierls-Frölich problems and finite-zone potentials. II,” Teor. Mat. Fiz.,48, No. 1, 60–69 (1981).Google Scholar
  5. 5.
    S. A. Brazovskii, S. A. Gordyunin, and N. N. Kirova, “Exact solution of the Peierls model with an arbitrary number of electrons on an elementary cell,” Pis'ma Zh. Eksp. Teor. Fiz.,31, No. 8, 486–490 (1980).Google Scholar
  6. 6.
    S. A. Brazovskii, I. E. Dzyaloshinskii, and N. N. Kirova, “Spin states in the Peierls model and finite-zone potentials,” Zh. Eksp. Teor. Fiz.,82, No. 6, 2279–2298 (1981).Google Scholar
  7. 7.
    S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, “Exactly solvable discrete Peierls models,” Zh. Eksp. Toer. Fiz.,83 No. 1, 389–415 (1982).Google Scholar
  8. 8.
    I. M. Gel'fand and L. A. Dikii, “Asymptotics of the resolvent of Sturm-Liouville equations and the algebra of Korteweg-de Vries equations,” Usp. Mat. Nauk,30, No. 5, 67–100 (1975).Google Scholar
  9. 9.
    I. E. Dzyaloshinskii, “Theory of helicoidal structures,” Zh. Eksp. Teor. Fiz.,47, No. 5, 992–1008 (1964).Google Scholar
  10. 10.
    I. E. Dzyaloshinskii and I. M. Krichever, “Effects of commensurability in the discrete Peierls model,” Zh. Eksp. Teor. Fiz.,83, No. 5, 1576–1581 (1982).Google Scholar
  11. 11.
    I. E. Dzyaloshinskii and I. M. Krichever, “Sound and the wave of charge density in the discrete Peierls model,” Zh. Eksp. Teor. Fiz.,95 (1983). (in the press)Google Scholar
  12. 12.
    B. A. Dubrovin, “The periodic problem for the Korteweg-de Vries equation in the class of finite-zone potentials,” Funkts. Anal. Prilozhen.,9, No. 3, 41–51(1975).Google Scholar
  13. 13.
    B. A. Dubrovin, “Theta functions and nonlinear equations,” Usp. Mat. Nauk,36, No. 2, 11–80 (1981).Google Scholar
  14. 14.
    B. A. Dubrovin, “The inverse problem of scattering theory for periodic finite-zone potentials,” Funkts. Anal. Prilozhen.,9, No. 1, 65–66 (1975).Google Scholar
  15. 15.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian manifolds,” Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  16. 16.
    B. A. Dubrovin and S. M. Natanzon, “Real two-zone solutions of the sine-Gordon equation,” Funkts. Anal. Prilozhen.,16, No. 1, 27–43 (1982).Google Scholar
  17. 17.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: Method of the Inverse Problem [in Russian], Nauka, Moscow (1980).Google Scholar
  18. 18.
    V. E. Zakharov and A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory integrable by the method of the inverse problem,” Zh. Eksp. Teor. Fiz.,74, No. 6, 1953–1974 (1978).Google Scholar
  19. 19.
    V. E. Zakharov and A. B. Shabat, “Integration of nonlinear equations of mathematical physics by the method of the inverse scattering problem. II,” Funkts. Anal. Prilozhen.,13, No. 3, 13–22 (1979).Google Scholar
  20. 20.
    V. E. Zakharov and A. B. Shabat, “The scheme of integration of nonlinear equations of mathematical physics by the method of the inverse scattering problem. I,” Funkts. Anal. Prilozhen.,8, No. 3, 43–53 (1974).Google Scholar
  21. 21.
    E. I. Zverovich, “Boundary-value problems of the theory of analytic functions,” Usp. Mat. Nauk,26, No. 1, 113–181 (1971).Google Scholar
  22. 22.
    A. R. Its, “On finite-zone solutions of equations,” see: V. B. Matveev, Abelian Functions and Solitons, Preprint of Wroclaw Univ., No. 373 (1976).Google Scholar
  23. 23.
    A. R. Its and V. B. Matveev, “On a class of solutions of the Korteweg-de Vries equation,” in: Probl. Mat. Fiz., No. 8, Leningrad Univ. (1976), pp. 70–92.Google Scholar
  24. 24.
    V. A. Kozel and V. P. Kotlyarov, “Almost-periodic solutions of the equation utt−uxx+ sin u=0,” Dokl. Akad. Nauk Ukr. SSR,A, No. 10, 878–881 (1976).Google Scholar
  25. 25.
    I. M. Krichever, “Methods of algebraic geometry in the theory of nonlinear equations,” Usp. Mat. Nauk,32, No. 6, 180–208 (1977).Google Scholar
  26. 26.
    I. M. Krichever, “Integration of nonlinear equations by methods of algebraic geometry,” Funkts. Anal. Prilozhen.,11, No. 1, 15–31 (1977).Google Scholar
  27. 27.
    I. M. Krichever, “Commutative rings of ordinary linear differential operators,” Funkts. Anal. Prilozhen.,12, No. 3, 20–31 (1978).Google Scholar
  28. 28.
    I. M. Krichever, “An analogue of the D'Alembert formula for equations of the principal chiral field and the sine-Gordon equation,” Dokl. Akad. Nauk SSSR,253, No. 2, 288–292 (1980).Google Scholar
  29. 29.
    I. M. Krichever, “The Peierls model,” Funkts. Anal. Prilozhen.,16, No. 4, 10–26 (1982).Google Scholar
  30. 30.
    I. M. Krichever, “Algebrogeometric spectral theory of the Schrödinger difference operator and the Peierls model,” Dokl. Akad. Nauk SSSR,265, No. 5, 1054–1058 (1982).Google Scholar
  31. 31.
    I. M. Krichever, “On rational solutions of the Kadomtsev-Petviashvili equation and on integrable systems of particles on the line,” Funkts. Anal. Prilozhen.,12, No. 1, 76–78 (1978).Google Scholar
  32. 32.
    I. M. Krichever, “Algebrogeometric construction of the Zakharov-Shabat equations and their periodic solutions,” Dokl. Akad. Nauk SSSR,227, No. 2, 291–294 (1976).Google Scholar
  33. 33.
    I. M. Krichever, “Algebraic curves and nonlinear difference equations,” Usp. Mat. Nauk,33, No. 4, 215–216 (1978).Google Scholar
  34. 34.
    I. M. Krichever, “Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles,” Funkts. Anal. Prilozhen.,14, No. 4, 45–54 (1980).Google Scholar
  35. 35.
    I. M. Krichever and S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations,” Usp. Mat. Nauk,35, No. 6, 47–68 (1980).Google Scholar
  36. 36.
    I. M. Krichever and S. P. Novikov, “Holomorphic bundles and nonlinear equations. Finitezone solutions of rank 2,” Dokl. Akad. Nauk SSSR,247, No. 1, 33–37 (1979).Google Scholar
  37. 37.
    I. M. Krichever and S. P. Novikov, “Holomorphic bundles over Riemann surfaces and the Kadomtsev-Petviashvili (KP) equation. I,” Funkts. Anal. Prilozhen.,12, No. 4, 41–52 (1978).Google Scholar
  38. 38.
    S. V. Manakov, “On complete integrability and stochastization in discrete dynamical systems,” Zh. Eksp. Teor. Fiz.,67, No. 2, 543–555 (1974).Google Scholar
  39. 39.
    N. I. Muskhelishvili, Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  40. 40.
    S. P. Novikov, “The periodic problem for the Korteweg-de Vries equation,” Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).Google Scholar
  41. 41.
    R. Peierls, Quantum Theory of the Solid State [Russian translation], IL, Moscow (1956).Google Scholar
  42. 42.
    J. Serre, Algebraic Groups and Class Fields [Russian translation], Mir, Moscow (1968).Google Scholar
  43. 43.
    E. Scott (ed.), Solitons in Action [Russian translation], Mir, Moscow (1981).Google Scholar
  44. 44.
    G. Springer, Introduction to the Theory of Riemann Surfaces [Russian translation], IL, Moscow (1961).Google Scholar
  45. 45.
    I. V. Cherednik, “Algebraic aspects of two-dimensional chiral fields. I,” in: Sov. Probl. Mat. (Itogi Nauki i Tekhniki VINITI AN SSSR),17, Moscow (1981), pp. 175–218.Google Scholar
  46. 46.
    I. V. Cherednik, “On realness conditions in ‘finite-zone integration,’” Dokl. Akad. Nauk SSSR,252, No. 5, 1104–1108 (1980).Google Scholar
  47. 47.
    I. V. Cherednik, “On integrability of a two-dimensional asymmetrical chiralO(3)-field and its quantum analogue,” Yad. Fiz.,33, No. 1, 278–281 (1981).Google Scholar
  48. 48.
    I. V. Cherednik, “On solutions of algebraic type of asymmetric differential equations,” Funkts. Anal. Prilozhen.,15, No. 3, 93–94 (1981).Google Scholar
  49. 49.
    M. A. Ablowitz, D. J. Kaup, A. S. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett.,30, 1262–1264 (1973).CrossRefGoogle Scholar
  50. 50.
    S. Aubry, “Analyticity breaking and Anderson localization in incommensurate lattices,” Ann. Israel Phys. Soc.,3, 133–164 (1980).Google Scholar
  51. 51.
    S. Aubry, “Metal-insulator transition in one-dimensional deformable lattices,” Bifurcation Phenomena in Math. Phys. and Related Topics, C. Bardos and D. Bessis (eds.) (1980), pp. 163–184.Google Scholar
  52. 52.
    H. M. Baker, “Note on the foregoing paper ‘Commutative ordinary differential operators,’” Proc. R. Soc. London,118, 584–593 (1928).Google Scholar
  53. 53.
    R. K. Bullough and P. J. Caudrey (eds.), Solitons, Springer-Verlag (1980).Google Scholar
  54. 54.
    F. Calodgero, “Exactly solvable one-dimensional manybody systems,” Lett. Nuovo Cimento,13, 411–415 (1975).Google Scholar
  55. 55.
    D. V. Choodnovsky and G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations,” Lett. Nuovo Cimento,40B, 339–350 (1977).Google Scholar
  56. 56.
    E. I. Dinaburg and Y. C. Sinai, “Schrödinger equation with quasiperiodic potentials,” Fund. Anal.,9, 279–283 (1976).CrossRefGoogle Scholar
  57. 57.
    L. D. Faddeev, Quantum Scattering Transformation, Proc. Freiburg Summer Inst., 1981, Plenum Press (1982).Google Scholar
  58. 58.
    H. Flaschka, “Toda lattice. II,” Prog. Theor. Phys.,51, 543–555 (1974).Google Scholar
  59. 59.
    C. Gardner, J. Green, M. Kruskas, and R. Miura, “A method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett.,19, 1095–1098 (1967).CrossRefGoogle Scholar
  60. 60.
    P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Commun. Pure Appl. Math.,21, No. 5, 467–490 (1968).Google Scholar
  61. 61.
    A. N. Leznov and M. N. Saveliev, “On the two-dimensional system of differential equations,” Commun. Math. Phys.,74, 111–119 (1980).CrossRefGoogle Scholar
  62. 62.
    P. Mansfild, “Solutions of the Toda lattice,” Preprint Cambridge Univ., Cambridge, CB 39 EW (1982).Google Scholar
  63. 63.
    A. V. Mikhailov, “The reduction problem in the Zakharov-Shabat equations,” Physica 3D,1, 215–243 (1981).Google Scholar
  64. 64.
    A. V. Mikhailov, “The Landau-Lifshits equation and the Riemann-Hilbert boundary problem on the torus,” Phys. Lett.,92a, 2, 51–55 (1982).Google Scholar
  65. 65.
    A. M. Perelomov, “Completely integrable classical systems connected with semisimple Lie algebras,” Lett. Math. Phys.,1, 531–540 (1977).CrossRefGoogle Scholar
  66. 66.
    K. Pohlmeyer, “Integrable Hamiltonian systems and interaction through quadratic constraints,” Commun. Math. Phys.,46, 207–223 (1976).CrossRefGoogle Scholar
  67. 67.
    E. K. Sklyanin, “On complete integrability of the Landau-Lifshitz equation,” Preprint LOMI E-3-1979, Leningrad (1979).Google Scholar
  68. 68.
    W. P. Su, I. R. Schriffer, and A. I. Heeger, “Soliton excitations in polyacetylene,” Phys. Rev.,B22, 2099–2108 (1980).Google Scholar
  69. 69.
    M. Toda, “Waves in nonlinear lattices,” Prog. Theor. Phys. Suppl.,45, 174–200 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • I. M. Krichever

There are no affiliations available

Personalised recommendations