Advertisement

Journal of Soviet Mathematics

, Volume 28, Issue 1, pp 20–50 | Cite as

Matrix finite-zone operators

  • B. A. Dubrovin
Article

Abstract

A survey is given of the spectral properties of matrix finite-zone operators. Conditions of the type of J-self-adjointness for such operators and explicit formulas expressing the coefficients of such operators in terms of theta functions are obtained. The simplest examples of such J-self-adjoint, finite-zone operators turn out to be connected with the theory of ovals of plane, real, algebraic curves.

Keywords

Spectral Property Explicit Formula Theta Function Algebraic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    E. D. Belokolos and V. Z. Enol'skii, “The generalized Lamb Ansatz,” Teor. Mat. Fiz.,53, No. 2, 271–282 (1982).Google Scholar
  3. 3.
    A. V. Brailov, “Complete integrability of some Euler equations and applications,” Dokl. Akad. Nauk SSSR,268, No. 5, 1043–1046 (1983).Google Scholar
  4. 4.
    A. P. Veselov and S. P. Novikov, “On Poisson brackets consistent with algebraic geometry and the Korteweg-de Vries dynamics on the set of finite-zone potentials,” Dokl. Akad. Nauk SSSR,266, No. 3, 533–537 (1982).Google Scholar
  5. 5.
    I. M. Gel'fand and L. A. Dikii, “The resolvent and Hamiltonian systems,” Funkts. Anal. Prilozhen.,11, No. 2, 11–27 (1977).Google Scholar
  6. 6.
    E. B. Gledzero, F. V. Dolzhanskii, and A. M. Obukhov, Systems of Hydrodynamic Type and Their Application [in Russian], Nauka, Moscow (1981).Google Scholar
  7. 7.
    V. V. Golubev, Lectures on the Integration of the Equations of Motion of a Heavy Body near a Fixed Point [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
  8. 8.
    P. Griffiths and J. Harris, Principles of Algebraic Geometry [Russian translation], Vol. 1, Mir, Moscow (1982).Google Scholar
  9. 9.
    L. A. Dikii, “Remarks on Hamiltonian systems connected with the rotation group,” Funkts. Anal. Prilozhen.,6, No. 4, 83–84 (1972).Google Scholar
  10. 10.
    B. A. Dubrovin, “Analytic properties of spectral data for non-self-adjoint linear operators connected with real periodic solutions of the sine-Gordon equation,” Dokl. Akad. Nauk SSSR,265, No. 4, 789–793 (1982).Google Scholar
  11. 11.
    B. A. Dubrovin, “Completely integrable Hamiltonian systems connected with matrix operators and Abelian manifolds,” Funkts. Anal. Prilozhen.,11, No. 4, 28–41 (1977).Google Scholar
  12. 12.
    B. A. Dubrovin, “The periodic problem for the Korteweg-de Vries equation in the class of finite-zone potentials,” Funkts. Anal. Prilozhen.,9, No. 3, 41–51 (1975).Google Scholar
  13. 13.
    B. A. Dubrovin, “Theta functions and nonlinear equations,” Usp. Mat. Nauk,36, No. 2, 11–80 (1981).Google Scholar
  14. 14.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Dokl. Akad. Nauk SSSR,229 No. 1, 15–18(1976).Google Scholar
  15. 15.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian manifolds,” Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  16. 16.
    B. A. Dubrovin and S. M. Natanzon, “Real two-zone solutions of the sine-Gordon equation,” Funkts. Anal. Prilozhen.,16, No. 1, 27–43 (1982).Google Scholar
  17. 17.
    B. A. Dubrovin and S. P. Novikov, “Algebrogeometric Poisson brackets for real finitezone solutions of the sine-Gordon equation and the nonlinear Schrödinger equation,” Dokl. Akad. Nauk SSSR,267, No. 6, 1295–1300 (1982).Google Scholar
  18. 18.
    B. A. Durbovin and S. P. Novikov, “Periodic and conditionally periodic analogues of multisoliton solutions of the Korteweg-de Vries equation,” Zh. Eksp. Teor. Fiz.,67, No. 12, 2131–2143 (1974).Google Scholar
  19. 19.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications [in Russian], Nauka, Moscow (1979).Google Scholar
  20. 20.
    V. E. Zakharov, L. A. Takhtadzhyan, and L. D. Faddeev, “A complete description of solutions of the sine-Gordon equation,” Dokl. Akad. Nauk SSSR,219, No. 6, 1334–1337 (1974).Google Scholar
  21. 21.
    A. R. Its, “inversion of hyperelliptic integrals and integration of nonlinear differential equations,” Vestn. Leningr. Univ., No. 7, 39–46 (1976).Google Scholar
  22. 22.
    A. R. Its and V. P. Kotlyarov, “Explicit formulas for solutions of the nonlinear Schrödinger equation,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 965–968 (1976).Google Scholar
  23. 23.
    A. R. Its and V. B. Matveev, “Schrodinger operators with finite-zone spectrum and N-soliton solutions of the Korteweg-de Vries equation,” Teor. Mat. Fiz.,23, No. 1, 51–68 (1975).Google Scholar
  24. 24.
    V. A. Kozel and V. P. Kotlyarov, “Almost-periodic solutions of the equation utt−uxx+sin u =0,” Dokl. Akad. Nauk Ukr. SSR, A, No. 10, 878–881 (1976).Google Scholar
  25. 25.
    V. V. Kozlov, “Integrability and nonintegrability in Hamiltonian mechanics,” Usp. Mat. Nauk,38, No. 1, 3–67 (1983).Google Scholar
  26. 26.
    I. M. Krichever, “Algebraic curves and commuting matrix differential operators,” Funkts. Anal. Prilozhen.,10, No. 2, 75–76 (1976).Google Scholar
  27. 27.
    I. M. Krichever, “Algebrogeometric construction of the Zakharov-Shabat equations and their periodic solutions,” Dokl. Akad. Nauk SSSR,227, No. 2, 291–294 (1976).Google Scholar
  28. 28.
    I. M. Krichever, “Methods of algebraic geometry in the theory of nonlinear equations,” Usp. Mat. Nauk,32, No. 6, 183–208 (1977).Google Scholar
  29. 29.
    I. M. Krichever and S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations,” Usp. Mat. Nauk,35, No. 6, 47–68 (1980).Google Scholar
  30. 30.
    S. V. Manakov, “A remark on the integration of the Euler equations of the dynamics of an n-dimensional solid body,” Funkts. Anal. Prilozhen.,10, No. 4, 93–94 (1976).Google Scholar
  31. 31.
    V. A. Marchenko, Sturm-Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  32. 32.
    A. S. Mishchenko, “Integrals of geodesic flows on Lie groups,” Funkts. Anal. Prilozhen.,4, No. 3, 73–77 (1970).Google Scholar
  33. 33.
    A. S. Mishchenko and A. T. Fomenko, “The Euler equations on finite-dimensional Lie groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,42, 396–415 (1978).Google Scholar
  34. 34.
    S. P. Novikov, “The periodic problem for the Korteweg-de Vries equation,” Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).Google Scholar
  35. 35.
    S. P. Novikov (ed.), Theory of Solitons. The Method of the Inverse Problem [in Russian], Nauka, Moscow (1980).Google Scholar
  36. 36.
    V. A. Rokhlin, “Complex topological characteristics of real algebraic curves,” Usp. Mat. Nauk,33, No. 5, 77–89 (1978).Google Scholar
  37. 37.
    V. V. Trofimov, “The Euler equations on Borel subalgebras of semisimple Lie algebras,” Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 3, 714–732 (1979).Google Scholar
  38. 38.
    I. V. Cherednik, “Algebraic aspects of two-dimensional chiral fields. II,” Itogi Nauki i Tekh. VINITI. Algebra. Topologiya. Geometriya,18, 1981, pp. 73–150.Google Scholar
  39. 39.
    I. V. Cherednik, “Differential equations for the Baker-Akhiezer functions of algebraic curves,” Funkts. Anal. Prilozhen.,12, No. 3, 45–54 (1978).Google Scholar
  40. 40.
    I. V. Cherednik, “On realness conditions in ‘finite-zone integration,’” Dokl. Akad. Nauk SSSR,252, No. 5, 1104–1108 (1980).Google Scholar
  41. 41.
    I. V. Cherednik, “On regularity of ‘finite-zone’ solutions of integrable matrix differential equations,” Dokl. Akad. Nauk SSSR,266, No. 3, 593–597 (1982).Google Scholar
  42. 42.
    M. Adler and P. van Moerbeke, “Completely integrable systems, Euclidean Lie algebras, and curves,” Adv. Math.,38, No. 3, 267–317 (1980).CrossRefGoogle Scholar
  43. 43.
    M. Adler and P. van Moerbeke, “Linearization of Hamiltonian systems, Jacobi varieties, and representation theory,” Adv. Math.,38, No. 3, 318–379 (1980).CrossRefGoogle Scholar
  44. 44.
    M. Adler and P. van Moerbeke, “The algebraic integrability of a geodesic flow on SO(4),” Invent. Math.,67, No. 2, 297–331 (1982).CrossRefGoogle Scholar
  45. 45.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “Topological and algebraic geometrical methods in modern mathematical physics. II,” in: Soviet Scientific Reviews, Vol. 3, Harwood Acad. Publisher, New York (1982).Google Scholar
  46. 46.
    J. Fay, “Theta-functions on Riemann surfaces,” Lect. Notes Math., Springer,352 (1973).Google Scholar
  47. 47.
    G. Forest and D. W. McLaughlin, “Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint,” J. Math. Phys.,23, No. 7, 1248 (1982).CrossRefGoogle Scholar
  48. 48.
    P. D. Lax, “Periodic solutions of the Korgeweg-de Vries equation,” Commun. Pure Appl. Math.,28, 141–188 (1975).Google Scholar
  49. 49.
    P. D. Lax, “Periodic solutions of the KdV equation,” Lect. Appl. Math.,15, 85–96 (1974).Google Scholar
  50. 50.
    V. B. Matveev, “Abelian functions and solitons,” Preprint No. 373, Inst. Teor. Phys., Wroclaw (1976).Google Scholar
  51. 51.
    H. P. McKean, “The sine-Gordon and sinh-Gordon equations on the circle,” Commun. Pure Appl. Math.,34, No. 2, 197–257 (1981).Google Scholar
  52. 52.
    H. P. McKean and P. van Moerbeke, “The spectrum of Hill's equation,” Invent. Math.,30, No. 3, 217–274 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • B. A. Dubrovin

There are no affiliations available

Personalised recommendations