Journal of Soviet Mathematics

, Volume 28, Issue 1, pp 1–20 | Cite as

Two-dimensional Schrödinger operators in periodic fields

  • S. P. Novikov
Article

Abstract

A class of problems connected with the description of the motion of an attracted quantum particle in possibly time-dependent, periodic, external fields is studied on the basis of a development of the method of the inverse problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Bateman and E. Erdelyi, Higher Transcendental Functions. Elliptic and Automorphic Functions. The Lamé and Mathieu Functions, Nauka, Moscow (1967).Google Scholar
  2. 2.
    P. G. Grinevich, “Rational solutions of the commutation equations for differential operators,” Funkts. Anal. Prilozhen.,16, No. 1, 19–24 (1982).Google Scholar
  3. 3.
    B. A. Dubrovin, “The periodic problem for the Korteweg-de Vries equation in the class of finite-zone potentials,” Funkts. Anal. Prilozhen.,9, No. 3, 41–51 (1975).Google Scholar
  4. 4.
    B. A. Dubrovin, “Theta functions and nonlinear equations,” Usp. Mat. Nauk,36, No. 2, 11–80 (1981).Google Scholar
  5. 5.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Dokl. Akad. Nauk SSSR,229, No. 1, 15–18 (1976).Google Scholar
  6. 6.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian manifolds,” Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  7. 7.
    B. A. Dubrovin and S. M. Natanzon, “Real two-zone solutions of the sine-Gordon equation,” Funkts. Anal. Prilozhen.,16, No. 1, 27–43 (1982).Google Scholar
  8. 8.
    B. A. Dubrovin and S. P. Novikov, “Periodic and conditional periodic analogues of multisoliton solutions of the Korteweg-de Vries equation,” Zh. Eksp. Teor. Fiz.,67, No. 12, 2131–2143 (1974).Google Scholar
  9. 9.
    B. A. Dubrovin and S. P. Novikov, “Algebrogeometric Poisson brackets for real finite-zone solutions of the sine-Gordon equation and the nonlinear Schrödinger equation,” Dokl. Akad. Nauk SSSR,267, No. 6, 1295–1300 (1982).Google Scholar
  10. 10.
    B. A. Dubrovin and S. P. Novikov, “The base states of a two-dimensional electron in a periodic field,” Zh. Eksp. Teor. Fiz.,79, No. 3, 1006–1016 (1980).Google Scholar
  11. 11.
    B. A. Dubrovin and S. P. Novikov, “Base states in a periodic field. Magnetic Bloch functions and vector bundles,” Dokl. Akad. Nauk SSSR,253, No. 6, 1293–1297 (1980).Google Scholar
  12. 12.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).Google Scholar
  13. 13.
    V. E. Zakharov, L. A. Takhtadzhyan, and L. D. Faddeev, “Complete description of solutions of the sine-Gordon equation,” Dokl. Akad. Nauk SSSR,219, No. 6, 1334–1337 (1974).Google Scholar
  14. 14.
    A. R. Its and V. B. Matveev, “Schrödinger operators with finite-zone spectrum and M-soliton solutions of the Korteweg-de Vries equation,” Teor. Mat. Fiz.,23, No. 1, 51–68 (1975).Google Scholar
  15. 15.
    I. M. Krichever, “Algebrogeometric construction of the Zakharov-Shabat equations and their periodic solutions,” Dokl. Akad. Nauk SSSR,227, No. 2, 291–294 (1976).Google Scholar
  16. 16.
    I. M. Krichever, “Integration of nonlinear equations by methods of algebraic geometry,” Funkts. Anal. Prilozhen.,11, No. 1, 15–31 (1977).Google Scholar
  17. 17.
    I. M. Krichever, “Methods of algebraic geometry in the theory of nonlinear equations,” Usp. Mat. Nauk,32, No. 6, 183–208 (1977).Google Scholar
  18. 18.
    I. M. Krichever, “Commutative rings of ordinary linear differential operators,” Funkts. Anal. Prilozhen.,12, No. 3, 20–31 (1978).Google Scholar
  19. 19.
    I. M. Krichever and S. P. Novikov, “Holomorphic bundles over Riemann surfaces and the Kadomtsev-Petviashvili (KP) equation. 1,” Funkts. Anal. Prilozhen.,12, No. 4, 41–52 (1978).Google Scholar
  20. 20.
    I. M. Krichever and S. P. Novikov, “Holomorphic bundles and nonlinear equations. Finitezone solutions of rank 2,” Dokl. Akad. Nauk SSSR,247, No. 1, 33–37 (1979).Google Scholar
  21. 21.
    I. M. Krichever and S. P. Novikov, “Holomorphic bundles over algebraic curves and nonlinear equations,” Usp. Mat. Nauk,35, No. 6, 47–68 (1980).Google Scholar
  22. 22.
    A. S. Lyskova, “On the Schrödinger operator in a magnetic field,” Usp. Mat. Nauk,36, No. 2, 189–190 (1981).Google Scholar
  23. 23.
    A. S. Lyskova, “Topological properties of the Schrödinger operator in a magnetic field and a weak potential,” Usp. Mat. Nauk,36, No. 5, 181–182 (1981).Google Scholar
  24. 24.
    O. I. Mokhov, “Commuting ordinary differential operators of rank 3 corresponding to an elliptic curve,” Usp. Mat. Nauk,37, No. 4, 169–170 (1982).Google Scholar
  25. 25.
    S. P. Novikov, “Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers,” Dokl. Akad. Nauk SSSR,257, No. 3, 538–543 (1981).Google Scholar
  26. 26.
    S. P. Novikov, “The periodic problem for the Korteweg-de Vries equation. 1,” Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).Google Scholar
  27. 27.
    S. P. Novikov, “Commuting operators of rankl>1 with periodic coefficients,” Dokl. Akad. Nauk SSSR,263, No. 6, 1311–1314 (1982).Google Scholar
  28. 28.
    S. P. Novikov and P. G. Grinevich, “On the spectral theory of commuting operators of rank 2 with periodic coefficients,” Funkts. Anal. Prilozhen.,16, No. 1, 25–26 (1982).Google Scholar
  29. 29.
    S. I. Svinolupov and V. V. Sokolov, “On evolution equations with nontrivial conservation laws,” Funkts. Anal. Prilozhen.,16, No. 4, 86–87 (1982).Google Scholar
  30. 30.
    I. V. Cherednik, “On conditions of realness in “finite-zone integration,” Dokl. Akad. Nauk SSSR,252, No. 5, 1104–1108 (1980).Google Scholar
  31. 31.
    M. Ablowitz, D. Kaup, A. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett.,30, 1262–1264 (1973).CrossRefGoogle Scholar
  32. 32.
    Y. Akharonov and A. Casher, “Ground state of a spin 1/2 charged particle in a two-dimensional magnetic field,” Phys. Rev. A,19, No. 6, 2461–2464 (1979).CrossRefGoogle Scholar
  33. 33.
    M. Atiyah and I. Singer, “The index of elliptic operators on compact manifolds,” Bull. Am. Math. Soc.,69, No. 3, 422–433 (1963).Google Scholar
  34. 34.
    J. E. Avron and R. Seiler, “Paramagnetism for nonrelativistic electrons and Euclidean massless Dirac particles,” Phys. Rev. Lett.,42, No. 15, 931–934 (1979).CrossRefGoogle Scholar
  35. 35.
    H. F. Baker, “Note on the foregoing paper “Commutative ordinary differential operators” by J. L. Burchnall and T. W. Chaundy,” Proc. R. Soc., London,A118, 584–593 (1928).Google Scholar
  36. 36.
    H. F. Baker, Abelian Functions, Cambridge Univ. Press (1897).Google Scholar
  37. 37.
    E. Brown, “Bloch electrons in a uniform magnetic field,” Phys. Rev.,A 133, No. 4, 1038–1045 (1964).CrossRefGoogle Scholar
  38. 38.
    J. L. Burchnall and T. W. Chaundy, “Commutative ordinary differential operators,” Proc. London Math. Soc.,21, 420–440 (1923).Google Scholar
  39. 39.
    J. L. Burchnall and T. W. Chaundy, “Commutative ordinary differential operators,” Proc. R. Soc., London,A 118, 557–583 (1928).Google Scholar
  40. 40.
    P. Dehornoy, “Operateurs differentiels et courbes elliptiques,” Compositio Mathematica,43, No. 1, 71–99 (1981).Google Scholar
  41. 41.
    P. Lax, “Periodic solutions of the KdV equation,” Commun. Pure Appl. Math.,38, No. 1, 141–188 (1975).Google Scholar
  42. 42.
    H. McKean and P. Van Moerbeke, “The spectrum of Hill's equation,” Invent. Math.,30, No. 3, 217–274 (1975).CrossRefGoogle Scholar
  43. 43.
    J. Zak, “Magnetic translation groups,” Phys. Rev.,A 134, No. 6, 1602–1612 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • S. P. Novikov

There are no affiliations available

Personalised recommendations