Siberian Mathematical Journal

, Volume 37, Issue 2, pp 325–334 | Cite as

On mean quasiconformal mappings

  • V. I. Ryazanov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Ahlfors, “On quasiconformal mappings,” J. Analyse Math.,3, 1–58 (1953–1954).Google Scholar
  2. 2.
    P. A. Biluta, “Some extremal problems for mean quasiconformal mappings,” Sibirsk. Mat. Zh.,6, No. 4, 717–726 (1965).Google Scholar
  3. 3.
    V. I. Kruglikov and V. M. Miklyukov, “On some classes of plane topological mappings with weak derivatives,” in: Metric Questions of the Theory of Functions and Mappings [in Russian], Naukova Dumka, Kiev, 1973, pp. 102–122.Google Scholar
  4. 4.
    V. I. Kruglikov, “On existence and uniqueness of mean quasiconformal mappings,” in: Metric Questions of the Theory of Functions and Mappings [in Russian], Naukova Dumka, Kiev, 1973, pp. 123–147.Google Scholar
  5. 5.
    S. L. Krushkal' and R. Kühnau, Quasiconformal Mappings: New Methods and Applications [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  6. 6.
    M. Perovich, “Global homeomorphy of mean quasiconformal mappings,” Dokl. Akad. Nauk SSSR,230, No. 4, 781–784 (1976).Google Scholar
  7. 7.
    I. N. Pesin, “Mean quasiconformal mappings,” Dokl. Akad. Nauk SSSR,187, No. 4, 740–742 (1969).Google Scholar
  8. 8.
    V. M. Miklyukov and G. D. Suvorov, “On existence and uniqueness of quasiconformal mappings with unbounded characteristics,” in: Studies on the Theory of Functions of Complex Variables and Its Applications [in Russian], Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1972, pp. 45–53.Google Scholar
  9. 9.
    G. R. David, “Solutions de l'equation de Beltrami avec ∥Μ=1,” Ann. Acad. Sci. Fenn. Ser. A I. Math.,13, No. 1, 25–70 (1988).Google Scholar
  10. 10.
    P. Tukia, “Compactness properties ofΜ-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. A I. Math.,16, No. 1, 47–69 (1991).Google Scholar
  11. 11.
    V. I. Ryazanov, “Some questions of convergence and compactness for quasiconformal mappings,” Amer. Math. Soc. Transl. Ser. 2,131, No. 2, 7–19 (1986).Google Scholar
  12. 12.
    V. Ya. Gutlyanskii and V. I. Ryazanov, “On quasiconformal mappings with integral constraints on the Lavrent'ev characteristic,” Sibirsk. Mat. Zh.,31, No. 2, 21–36 (1990).Google Scholar
  13. 13.
    V. I. Ryazanov, “On compactification of classes with integral constraints on the Lavrent'ev characteristic,” Sibirsk. Mat. Zh.,33, No. 1, 87–104 (1992).Google Scholar
  14. 14.
    V. I. Ryazanov, “On quasiconformal mappings with constraints on measure,” Ukrain. Mat. Zh.,45, No. 7, 1009–1019 (1993).Google Scholar
  15. 15.
    F. M. Gehring and O. Lehto, “On the differentiability of functions of a complex variable,” Ann. Acad. Sci. Fenn. Ser. A I. Math.,272, 1009–1019 (1959).Google Scholar
  16. 16.
    L. Ahlfors, Lectures on Quasiconformal Mappings [Russian translation], Mir, Moscow (1969).Google Scholar
  17. 17.
    V. Ya. Gutlyanskii, “On the variational method for univalent functions with quasiconformal extension,” Sibirsk. Mat. Zh.,21, No. 2, 61–78 (1980).Google Scholar
  18. 18.
    O. Lehto and K. I. Virtanen, Quasikonforme Abbildungen, Springer, Berlin-New York (1965).Google Scholar
  19. 19.
    S. G. Mikhlin, Linear Partial Differential Equations [in Russian], Vysshaya Shkola, Moscow (1977).Google Scholar
  20. 20.
    N. Bourbaki, Functions of a Real Variable. Elementary Theory [Russian translation], Nauka, Moscow (1965).Google Scholar
  21. 21.
    N. Dunford and J. T. Schwartz, Linear Operators. Vol. 1: General Theory [Russian translation], Izdat. Inostr. Lit., Moscow (1962).Google Scholar
  22. 22.
    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1966).Google Scholar
  23. 23.
    K. Kuratowski, Topology. Vol. 1 [Russian translation], Mir, Moscow (1966).Google Scholar
  24. 24.
    K. Kuratowski, Topology. Vol. 2 [Russian translation], Mir, Moscow (1969).Google Scholar
  25. 25.
    N. Bourbaki, General Topology. Fundamental Structures [Russian translation], Nauka, Moscow (1968).Google Scholar
  26. 26.
    S. Sacks, Theory of the Integral [Russian translation], Izdat. Inostr. Lit., Moscow (1949).Google Scholar
  27. 27.
    B. V. Bojarsky, “Weak solutions to a system of first-order differential equations of elliptic type with discontinuous coefficients,” Mat. Sb.,4, No. 4, 451–503 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. I. Ryazanov
    • 1
  1. 1.Donetsk

Personalised recommendations