Journal of Soviet Mathematics

, Volume 29, Issue 4, pp 1426–1481 | Cite as

Graph isomorphism problem

  • V. N. Zemlyachenko
  • N. M. Korneenko
  • R. I. Tyshkevich
Article

Abstract

The article is a creative compilation of certain papers devoted to the graph isomorphism problem, which have appeared in recent years. An approach to the isomorphism problem is proposed in the first chapter, combining, mainly, the works of Babai and Luks. This approach, being to the survey's authors the most promising and fruitful of results, has two characteristic features: the use of information on the special structure of the automorphism group and the profound application of the theory of permutation groups. In particular, proofs are given of the recognizability of the isomorphism of graphs with bounded valences in polynomial time and of all graphs in moderately exponential time. In the second chapter a free exposition is given of the Filotti-Mayer-Miller results on the isomorphism of graphs of bounded genus. New and more complete proofs of the main assertions are presented, as well as an algorithm for the testing of the isomorphism of graphs of genus g in time O(vO(g)), where v is the number of vertices. In the third chapter certain extended means of the construction of algorithms testing an isomorphism are discussed together with probabilistically estimated algorithms and the Las Vegas algorithms. In the fourth chapter the connections of the graph isomorphism problem with other problems are examined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Algorithmic Investigations in Combinatorics [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    V. L. Arlazarov, I. I. Zuev, A. V. Uskov, and I. A. Faradzhev, “Algorithms for bringing finite undirected graphs to canonic form,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 3, 737–743 (1974).Google Scholar
  3. 3.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addition-Wesley, Reading, MA (1974).Google Scholar
  4. 4.
    B. Yu. Veisfeiler and A. A. Leman, “Reducing a graph to canonic form and the algebra arising here,” Nauchn.-Tekh. Inf., Ser. 2, No. 9, 12–16 (1968).Google Scholar
  5. 5.
    G. G. Vizing, “Reduction of the problems of isomorphism and of the isomorphic imbedding of graphs to the problem of finding the incompleteness of a graph,” All-Union Conf. Cybernetics Problems [in Russian], Novosibirsk (1974), pp. 124–125.Google Scholar
  6. 6.
    D. Yu. Grigor'ev, “The reduction of graph isomorphism to polynomial problems,” J. Sov. Math.,20, No. 4, 2296–2298 (1982).Google Scholar
  7. 7.
    D. Yu. Grigor'ev, “Complexity of ‘wild’ matrix problems and of the isomorphism of algebras and graphs,” J. Sov. Math.,22, No. 3 1285–1289 (1983).Google Scholar
  8. 8.
    M. A. Zaitsev, “On the 3-edge isomorphism of graphs,” Vopr. Kibernet., No. 26, 65–76 (1978).Google Scholar
  9. 9.
    M. A. Zaitsev, “On the Hamiltonian isomorphism of graphs,” Mat. Zametki,25, No. 2, 299–306 (1979).Google Scholar
  10. 10.
    V. N. Zemlyachenko, “Canonic enumeration of trees,” Proc. Sem. Combinatorial Analysis [in Russian], Moscow State Univ. (1970).Google Scholar
  11. 11.
    V. N. Zemlyachenko, “On graph identification algorithms,” Vopr. Kibern., No. 15, 33–41 (1975).Google Scholar
  12. 12.
    V. N. Zemlyachenko, “Establishment of graph isomorphism,” Mathematical Questions on Modeling Complex Objects [in Russian], Petrozavodsk (1979).Google Scholar
  13. 13.
    V. N. Zemlyachenko, “Polynomial identification algorithms of almost all graphs,” Mathematical Questions on Modeling Complex Objects, Petrozavodsk (1982).Google Scholar
  14. 14.
    R. M. Karp, “Reducibility of combinatorial problems,” in: Complexity of Computer Computations, IBM Research Center, Yorktown Heights, NY (1972).Google Scholar
  15. 15.
    N. M. Korneenko, “Properties of metric spaces of graph isomorphism classes,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 32–36 (1981).Google Scholar
  16. 16.
    N. M. Korneenko, “On the complexity of computation of the distance between graphs,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1 (1982).Google Scholar
  17. 17.
    A. I. Kostyukovich, “Polynomial equivalence of certain discrete optimization problems,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 4, 47–49 (1979).Google Scholar
  18. 18.
    S. A. Cook, “The complexity of theorem-proving procedures,” Proc. Third Ann. ACM Sympos. Theory of Computing, Assoc. Comput. Mach., New York (1971), pp. 151–158.Google Scholar
  19. 19.
    V. K. Leont'ev, “Local optimization algorithm for solving certain combinatorial problems,” Vopr. Kibern., No. 15, 61–66 (1975).Google Scholar
  20. 20.
    N. N. Metel'skii and N. M. Korneenko, “Metrization of one class of graphs,” Dokl. Akad. Nauk BSSR,23, No. 1, 5–7 (1979).Google Scholar
  21. 21.
    A. A. Mironov, “Some properties of number sets realizable in graphs,” Tr. Mosk. Inst. Inzh. Transport., No. 640, 115–120 (1979).Google Scholar
  22. 22.
    O. Ore, Theory of Graphs, Am. Math. Soc., Providence, RI (1962).Google Scholar
  23. 23.
    C. C. Sims, “Computational methods in the study of permutation groups,” in: Computational Problems in Abstract Algebra, Pergamon Press, Oxford (1970), pp. 169–183.Google Scholar
  24. 24.
    D. A. Suprunenko, Groups of Matrices [in Russian], Nauka, Moscow (1972).Google Scholar
  25. 25.
    S. A. Trakhtenbrot, “On the theory of repetition-free contact schemes,” Tr. Mat. Inst. Steklov. Akad. Nauk SSSR,51, 226–269 (1958).Google Scholar
  26. 26.
    R. I. Tyshkevich, “Canonic decomposition of a graph,” Dokl. Akad. Nauk BSSR,24, No. 8, 677–679 (1980).Google Scholar
  27. 27.
    F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).Google Scholar
  28. 28.
    M. Hall, Jr., The Theory of Groups, MacMillan, New York (1959).Google Scholar
  29. 29.
    J. E. Hopcroft and R. E. Tarjan, “Isomorphism of planar graphs,” in: Complexity of Computer Computations, IBM Research Center, Yorktown Heights, NY (1972).Google Scholar
  30. 30.
    D. Angluin, “On counting problems and the polynomial hierarchy,” Theor. Comput. Sci.,12, No. 2, 161–163 (1980).Google Scholar
  31. 31.
    M. D. Atkinson, “An algorithm for finding the blocks of a permutation group,” Math. Comput.,29, No. 131 (1975).Google Scholar
  32. 32.
    L. Babai, “On the isomorphism problem,” App. to Proc. Conf. Foundat. Comput. Theory, Poland (1977), pp. 19–23.Google Scholar
  33. 33.
    L. Babai, “The star-system problem is at least as hard as the graph isomorphism problem,” in: A. Hajnal and V. T. Sós (eds.), Combinatorics, Vol. II, North-Holland, Amsterdam-Oxford-New York (1978), p. 1214.Google Scholar
  34. 34.
    L. Babai, “Monte-Carlo algorithms in graph isomorphism testing,” Preprint, Univ, Toronto (1979).Google Scholar
  35. 35.
    L. Babai, “Isomorphism testing and symmetry of graphis,” Ann. Discrete Math.,8, 101–109 (1980).Google Scholar
  36. 36.
    L. Babai, “On the complexity of canonical labeling of strongly regular graphs,” SIAM J. Comput.,9, 212–216 (1980).Google Scholar
  37. 37.
    L. Babai, “Moderately exponential bound for graph isomorphism,” in: Fundamentals of Computation Theory, F. Gecseg (ed.), Lect. Notes Comput. Sci., Vol. 117, Springer-Verlag, Berlin-Heidelberg-New York (1981), pp. 34–50.Google Scholar
  38. 38.
    L. Babai, P. J. Cameron, and P. P. Pàlfy, “On the order of primitive permutation groups with bounded non-Abelian composition factors,” Preprint (1981).Google Scholar
  39. 39.
    L. Babai and P. Erdös, “Random graph isomorphism,” Preprint (1977).Google Scholar
  40. 40.
    L. Babai, P. Erdös, and S. M. Selkow, “Random graph isomorphism,” SIAM J. Comput.,9, No. 3, 628–635 (1980).Google Scholar
  41. 41.
    L. Babai and L. Kucera, “Canonical labeling of graphs in linear average time,” 20th Ann. Sympos. Foundations Comput. Sci., IEEE Computer Soc., New York (1979), pp. 39–46.Google Scholar
  42. 42.
    L. Babai and L. Lovász, “Permutation groups and almost regular graphs,” Stud. Sci. Math. Hungar.,8, 141–150 (1973).Google Scholar
  43. 43.
    M. Behzad, “The degree preserving group of a graph,” Riv. Mat. Univ. Parma, No. 11, 307–311 (1970).Google Scholar
  44. 44.
    K. S. Booth, “Isomorphism testing for graphs, semigroups and finite automata are polynomially equivalent problems,” SIAM J. Comput.,7, No. 3, 273–279 (1978).Google Scholar
  45. 45.
    K. S. Booth, “Problems polynomially equivalent to graph isomorphism,” Proc. Sympos. New Directions and Recent Results in Algorithms and Complexity, Carnegie-Mellon Univ. (1979).Google Scholar
  46. 46.
    C. J. Colburn, “On testing isomorphism of permutation graphs,” Networks,11, No. 1, 13–21 (1981).Google Scholar
  47. 47.
    M. J. Colburn and C. J. Colburn, “Graph isomorphsim and self-complementary graphs,” SIGACT News,10, No. 1, 25–29 (1978).Google Scholar
  48. 48.
    M. J. Colburn and C. J. Colburn, “The complexity of combinatorial isomorphism problems, Ann. Discrete Math.,8, 113–116 (1980).Google Scholar
  49. 49.
    C. J. Colburn and D. G. Corneil, “On deciding switching equivalence of graphs,” Discrete Appl. Math.,2, 181–184 (1980).Google Scholar
  50. 50.
    C. J. Colburn, “The complexity of symmetrizing matrices,” Inf. Process. Lett.,9, No. 3, 108–109 (1979).Google Scholar
  51. 51.
    D. G. Corneil, “Recent results on the graph isomorphism problem,” in: Proc. Eighth Manitoba Conf. Numer. Math. and Computing, D. McCarthy and H. C. Williams (eds.), Utilitas Mathematica Publ., Inc., Winnipeg, Man. (1979), pp. 13–31.Google Scholar
  52. 52.
    D. G. Cornell and C. C. Gotlieb, “An efficient algorithm for graph isomorphism,” J. Assoc. Comput. Mach.,17, 51–64 (1970).Google Scholar
  53. 53.
    D. G. Corneil and D. G. Kirkpatrick, “A theoretical analysis of various heuristics for the graph isomorphism problem,” SIAM J. Comput.,9, No. 2, 281–297 (1980).Google Scholar
  54. 54.
    N. Deo, J. M. Davis, and R. E. Lord, “A new algorithm for diagraph isomorphism,” BIT,17, 16–30 (1977).Google Scholar
  55. 55.
    P. Erdös and A. Renyi, “Asymmetric graphs,” Acta Math. Acad. Sci. Hung.,14, 295–315 (1963).Google Scholar
  56. 56.
    R. A. Edmonds, “A combinatorial representation for polyhedral surfaces,” Not. Am. Math. Soc.,7, 646 (1960).Google Scholar
  57. 57.
    I. S. Filotti and J. N. Mayer, “A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus,” Conf. Proc. Twelfth Ann. ACM Sympos. Theory of Computing, Assoc. Comput. Mach., New York (1980), pp. 236–243.Google Scholar
  58. 58.
    I. S. Filotti, G. L. Miller, and J. Reif, “On determining the genus of a graph in O(vO(g)) steps,” Conf. Record Eleventh Ann. ACM Sympos. Theory of Comput., Assoc. Comput. Mach., New York (1979), pp. 27–37.Google Scholar
  59. 59.
    R. Frucht, “Herstellung von Graphen mit vorgebener abstrakter Gruppe,” Compositio Math.,6, 239–250 (1938).Google Scholar
  60. 60.
    R. Frucht, “Lattice with a given abstract group,” Can. J. Math.,2, 417–419 (1950).Google Scholar
  61. 61.
    M. Furst, J. Hopcroft, and E. Luks, “A subexponential algorithm for trivalent graph isomorphism,” Congr. Numer.,28, 421–446 (1980).Google Scholar
  62. 62.
    M. Furst, J. Hopcroft, and E. Luks, “Polynomial-time algorithms for permutation groups,” 21st Ann. Sympos. Foundations Comput. Sci., IEEE, NY (1980), pp. 36–41.Google Scholar
  63. 63.
    M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, San Francisco (1979).Google Scholar
  64. 64.
    G. Gati, “Further annotated bibliography on the isomorphism disease,” J. Graph Theory,3, No. 2, 95–104 (1979).Google Scholar
  65. 65.
    M. K. Goldberg, “A nonfactorial algorithm for testing isomorphism of two graphs,” Combinatorics and Optimization, Research Reports, No. 80-36, Faculty Math. Univ. Waterloo (1980).Google Scholar
  66. 66.
    D. Gries, “Describing an algorithm by Hopcroft,” Acta Inf.,2, 97–109 (1973).Google Scholar
  67. 67.
    R. Halin and H. A. Young, “A note on isomorphism of graphs,” J. London Math. Soc.,42, No. 2, 254–256 (1967).Google Scholar
  68. 68.
    Z. Hedrlin and A. Pultr, “On the full embeddings of categories of algebras,” Ill. J. Math.,10, 392–406 (1966).Google Scholar
  69. 69.
    P. Hell and J. Nesetril, “Graphs and k-societies,” Can. Math. Bull.,13, No. 3, 375–381 (1970).Google Scholar
  70. 70.
    D. G. Higman, “Coherent configurations. I,” Geometriae Dedicata,4, 1–32 (1975).Google Scholar
  71. 71.
    J. E. Hopcroft, An n log n algorithm for isomorphism of planar triplet connected graphs,” Stanford Comput. Sci. Rept., STAN-CS-71-192 (1971).Google Scholar
  72. 72.
    J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” in: Theory of Machines and Computations, Z. Kohavi and A. Paz (eds.), Academic Press, New York-London (1971), pp. 189–196.Google Scholar
  73. 73.
    J. E. Hopcroft and R. E. Tarjan, “Dividing a graph into triconnected components,” SIAM J. Comput.,2, No. 3, 136–158 (1973).Google Scholar
  74. 74.
    J. E. Hopcroft and R. E. Tarjan, “Efficient planarity testing,” J. Assoc. Comput. Mach.,21, No. 4, 549–568 (1974).Google Scholar
  75. 75.
    J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism of planar graphs; preliminary report,” Sixth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1974), pp. 172–184.Google Scholar
  76. 76.
    H. B. Hunt, III and D. J. Rosenkrantz, “Complexity of grammatical similarity relations,” Proc. Conf. Theor. Comput. Sci., Comput. Sci. Dept., Univ. Waterloo, Ontario (1978), pp. 139–145.Google Scholar
  77. 77.
    R. M. Karp, “Probabilistic analysis of a canonical labeling algorithm for graphs,” Proc. Sympos. Pure Math., Vol. 34, Am. Math. Soc., Providence, RI (1979), pp. 365–378.Google Scholar
  78. 78.
    D. Kozen, “Complexity of finitely presented algebras,” Conf. Record Ninth Ann. ACM Sympos. Theory of Comput., Assoc. Comput. Mach., New York (1977), pp. 164–167.Google Scholar
  79. 79.
    D. Kozen, “A clique problem equivalent to graph isomorphism,” SIGACT News,10, No. 2, 50–52 (1978).Google Scholar
  80. 80.
    L. Kucera, “Theory of categories and negative results in computational complexity,” Preprint, Karlov Univ., Prague (1976).Google Scholar
  81. 81.
    F. Lalonde, “Le problème d'étoiles pour graphes est NP-complet,” Discrete Math.,33, No. 3, 271–280 (1981).Google Scholar
  82. 82.
    L. Lesniak-Foster, “Parameter-preserving group of a graph,” Riv. Mat. Univ. Parma, No. 1, 113–117 (1975 (1977)).Google Scholar
  83. 83.
    G. Levi, “Graph isomorphism: A heuristic edge-partitioning-oriented algorithm,” Computing,12, 291–313 (1977).Google Scholar
  84. 84.
    D. Lichtenstein, “Isomorphism for graphs embeddable on the projective plane,” Conf. Proc. Twelfth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1980), pp. 218–224.Google Scholar
  85. 85.
    R. M. Lipton, “The beacon set approach to graph isomorphism,” SIAM J. Comput.,9 (1980).Google Scholar
  86. 86.
    L. Lovasz, “On the ratio of optimal and fractional cover,” Discrete Math.,13, 383–390 (1975).Google Scholar
  87. 87.
    A. Lubiw, “Some NP-complete problems similar to graph isomorphism,” SIAM J. Comput.,10, No. 1, 11–21 (1981).Google Scholar
  88. 88.
    G. S. Lueker and K. S. Booth, “A linear time algorithm for deciding interval graph isomorphism,” J. Assoc. Comput. Mach.,26, No. 2, 183–195 (1979).Google Scholar
  89. 89.
    E. M. Luks, “Isomorphism of graphs of bounded valence can be tested in polynomial time,” 21st Ann. Sympos. Foundations Comput. Sci., IEEE, Inc., New York (1980), pp. 42–49.Google Scholar
  90. 90.
    R. Mathon, “Sample graphs for isomorphism testing,” in: Proc. Ninth S. E. Conf. Combinatorics, Graph Theory, Comput., F. Hoffman, D. McCarthy, R. C. Mullin, and R. G. Stanton (eds.), Utilitas Mathematica Publ. Inc., Winnipeg, Man. (1978), pp. 499–517.Google Scholar
  91. 91.
    R. Mathon, “A note on graph isomorphism counting problems,” Inf. Process. Lett.,8, No. 3, 131–132 (1978).Google Scholar
  92. 92.
    B. D. McKay, “Computing algorithms and canonical labeling of graphs,” in: Combinatorial Mathematics, Lect. Notes Math., Vol. 686, Springer-Verlag, Berlin-Heidelberg-New York (1978), pp. 223–232.Google Scholar
  93. 93.
    B. D. McKay, “Backtrack programming and isomorph rejection on ordered subsets,” Ars Combin.,5, 65–69 (1978).Google Scholar
  94. 94.
    B. D. McKay, “Hadamard equivalence via graph isomorphism,” Discrete Math.,27, No. 2, 213–214 (1979).Google Scholar
  95. 95.
    C. J. Colburn and B. D. McKay, “A dorrection to Colburn's paper on the complexity of matrix symmetrizability,” Inf. Process. Lett.,11, No. 2, 96–97. (See [50].)(.Google Scholar
  96. 96.
    G. L. Miller, “Graph isomorphism, general remarks,” Conf. Record Ninth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1977), pp. 143–150.Google Scholar
  97. 97.
    G. L. Miller, “On the nlog n isomorphism technique (a preliminary report),” Conf. Record Tenth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1978), pp. 51–58.Google Scholar
  98. 98.
    G. L. Miller, “Graph isomorphism, general remarks,” J. Comput. Syst. Sci.,18, 128–142 (1979).Google Scholar
  99. 99.
    G. L. Miller, “Isomorphism testing for graphs of bounded genus,” Conf. Proc. Twelfth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1980), pp. 225–235.Google Scholar
  100. 100.
    A. Pultr, “Concerning universal categories,” Comment. Math. Univ. Carolinae,5, 227–239 (1964).Google Scholar
  101. 101.
    R. C. Read and D. G. Corneil, “The graph isomorphism disease,” J. Graph Theory,1, 339–363 (1977).Google Scholar
  102. 102.
    F. Schweiggert, “Zur isomorphie endlicher Graphen und Strukturen,” Diss. Dok. Naturwiss. (1979).Google Scholar
  103. 103.
    F. Sirovich, “Isomorfismo fra grafi: un algoritmo efficiente per trovare tutti gli isomorphismi,” Calcolo,8, No. 4, 301–337 (1971).Google Scholar
  104. 104.
    V. T. Sós, in: The Problems section of: A. Hajnal and V. T. Sós (eds.), Combinatorics, Vol. II, North-Holland, Amsterdam-Oxford-New York (1978), p. 1214. (See [33].)Google Scholar
  105. 105.
    J. Turner, “Generalized matrix functions and the graph isomorphism problem,” SIAM J. Appl. Math.,16, No. 3, 520–526 (1968).Google Scholar
  106. 106.
    S. H. Unger, “GIT: a heuristic program for testing pairs of directed line graphs for isomorphism,” Commun. Assoc. Comput. Mach.,7, No. 1, 26–34 (1964).Google Scholar
  107. 107.
    L. G. Valiant, “The complexity of computing the permanent,” Theor. Comput. Sci.,8, 189–201 (1979).Google Scholar
  108. 108.
    H. De Vries and A. B. De Miranda, “Groups with small number of automorphisms,” Math. Z.,68, 450–464 (1958).Google Scholar
  109. 109.
    L. Weinberg, “Plane representations and codes for planar graphs,” Proc. Third Ann. Allerton Conf. Circuit Syst. Theory (1965), pp. 733–744.Google Scholar
  110. 110.
    L. Weinberg, “A simple and efficient algorithn for determining isomorphism of planar triply connected graphs,” IEEE Trans. Commun. Technol.,CT-13, 142–148 (1960).Google Scholar
  111. 111.
    B. Weisfeiler, “On construction and identification of graphs,” Lect. Notes Math.,558, Springer-Verlag, Berlin-Heidelberg-New York (1976).Google Scholar
  112. 112.
    H. Whitney, “Congruent graphs and the connectivity of graphs,” Am. J. Math.,54, 150–168 (1932).Google Scholar
  113. 113.
    H. Whitney, “A set of topological invariants for graphs,” Am. J. Math.,55, 221–235 (1933).Google Scholar
  114. 114.
    H. Whitney, “On the classification of graphs,” Am. J. Math.,55, 236–244 (1933).Google Scholar
  115. 115.
    H. Whitney, “2-isomorphic graphs,” Am. J. Math.,55, 245–254 (1933).Google Scholar
  116. 116.
    F. F. Yao, “Graph 2-isomorphism is NP-complete,” Inf. Process. Lett.,9, No. 2, 68–72 (1979).Google Scholar
  117. 117.
    B. Zelinka, “On a certain distance between isomorphism classes of graphs,” Casopis Pest. Math.,100, No. 4, 371–373.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. N. Zemlyachenko
  • N. M. Korneenko
  • R. I. Tyshkevich

There are no affiliations available

Personalised recommendations