Advertisement

Siberian Mathematical Journal

, Volume 35, Issue 6, pp 1119–1132 | Cite as

Asymptotic decomposition of slow integral manifolds

  • L. I. Kononenko
  • V. A. Sobolev
Article

Keywords

Integral Manifold Asymptotic Decomposition Slow Integral Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Mitropol'skiî and O. B. Lykova, “On the integral manifold of differential equations with slow and fast motions,” Ukrain. Mat. Zh.,16, No. 2, 157–163 (1964).Google Scholar
  2. 2.
    V. V. Strygin and V. A. Sobolev, Separation of Motions by the Method of Integral Manifolds [in Russian], Nauka, Moscow (1988).Google Scholar
  3. 3.
    V. M. Gol'dshteîn and V. A. Sobolev, Qualitative Analysis of Singularly-Perturbed Systems [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk (1988).Google Scholar
  4. 4.
    J. K. Hale, Ordinary Differential Equations, Waley Interscience, New York (1969).Google Scholar
  5. 5.
    A. B. Vasil'eva and V. F. Butuzov, Singularly-Perturbed Equations in Critical Cases [in Russian], Moscow Univ., Moscow (1978).Google Scholar
  6. 6.
    V. F. Butuzov and A. B. Vasil'eva, Asymptotic Methods in the Theory of Singular Perturbations [in Russian], Vysshaya Shkola, Moscow (1990).Google Scholar
  7. 7.
    Z.-M. Gu, N. N. Nefëdov, and R. E. O'Malley Jr., “On singular singularly perturbed initial value problems,” SIAM J. Appl. Math.,49, No. 1, 1–25 (1989).Google Scholar
  8. 8.
    V. I. Babushok, V. M. Gol'dshtein, and V. A. Sobolev, “Critical conditions for thermal explosion with reactant consumption,” Combust. Sci. Tech.,70, 81–89 (1990).Google Scholar
  9. 9.
    G. N. Gorelov and V. A. Sobolev, “Mathematical modeling of critical phenomena in thermal explosion theory,” Combust. Flame,87, 203–210 (1991).Google Scholar
  10. 10.
    G. N. Gorelov and V. A. Sobolev, “Duck-trajectories in a thermal explosion problem,” Appl. Math. Lett.,5, No. 6, 3–6 (1992).Google Scholar
  11. 11.
    P. V. Kokotović, H. K. Khatil, and J. O'Reily, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York (1986).Google Scholar
  12. 12.
    V. A. Sobolev, “Integral manifolds and decomposition of singularly perturbed systems,” Systems Control Lett.,5, No. 4, 169–179 (1984).Google Scholar
  13. 13.
    J.-L. Callot, F. Diener, and M. Diener, “Le problème de la ‘chasse au canard’,” C. R. Acad. Sci. Paris Sér. I Math.,286, No. 22, 1059–1061 (1978).Google Scholar
  14. 14.
    A. K. Zvonkin and M. A. Shubin, “Nonstandard analysis and singular perturbations of ordinary differential equations,” Uspekhi Mat. Nauk,39, No. 2, 77–127 (1984).Google Scholar
  15. 15.
    V. I. Arnol'd, V. S. Afraîmovich, Yu. S. Il'yashenko, and L. P. Shil'nikov, “The theory of bifurcations,” Contemporary Problems of Mathematics. Fundamental Trends, Vol. 5 (Itogi Nauki i Tekhniki) [in Russian], VINITI, Moscow, 1986, pp. 5–218.Google Scholar
  16. 16.
    K. I. Chernyshëv, “On the asymptotic behavior of a solution to a linear reduced equation,” Sibirsk. Mat. Zh.,32, No. 3, 192–200 (1991).Google Scholar
  17. 17.
    M. A. Krasnosel'skiî, G. M. Vaînikko, P. P. Zabreîko, Ya. B. Rutitskiî, and V. Ya. Stetsenko, Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1969).Google Scholar
  18. 18.
    M. M. Vaînberg and V. A. Trenogin, The Branching Theory of Solutions to Nonlinear Equations [in Russian], Nauka, Moscow (1969).Google Scholar
  19. 19.
    V. M. Gol'dshteîn, L. I. Kononenko, M. Z. Lazman, V. A. Sobolev, and G. S. Yablonskiî, “Qualitative analysis of dynamical properties for an isothermal catalytic reactor of an ideal mixture,” in: Mathematical Problems in Chemical Kinetics [in Russian], Nauka, Novosibirsk, 1989, pp. 176–204.Google Scholar
  20. 20.
    K.-K. D. Young, P. V. Kokotović, and V. I. Utkin, “A singular perturbation analysis of high-gain feedback systems,” IEEE Trans. Automatic Control,22, No. 6, 931–938 (1977).Google Scholar
  21. 21.
    R. E. O'Malley Jr., “Singular perturbations and optimal control,” Lecture Notes in Math.,680, 171–218 (1978).Google Scholar
  22. 22.
    V. A. Sobolev, “Singular perturbations in a linearly quadratic problem of optimal control,” Avtomatika i Telemekhanika, No. 2, 53–64 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • L. I. Kononenko
    • 1
  • V. A. Sobolev
    • 1
  1. 1.Novosibirsk

Personalised recommendations