Journal of Molecular Evolution

, Volume 33, Issue 6, pp 514–524 | Cite as

Evidence for interspecific transfer of the transposable element mariner betweenDrosophila andZaprionus

  • Kyoko Maruyama
  • Daniel L. Hartl
Article

Summary

The transposable element mariner occurs widely in themelanogaster species group ofDrosophila. However, in drosophilids outside of themelanogaster species group, sequences showing strong DNA hybridization with mariner are found only in the genusZaprionus. the mariner sequence obtained fromZaprionus tuberculatus is 97% identical with that fromDrosophila mauritiana, a member of themelanogaster species subgroup, whereas a mariner sequence isolated fromDrosophila tsacasi is only 92% identical with that fromD. mauritiana. BecauseD. tsacasi is much more closely related toD. mauritiana than isZaprionus, the presence of mariner inZaprionus may result from horizontal transfer. In order to confirm lack of a close phylogenetic relationship between the genusZaprionus and themelanogaster species group, we compared the alcohol dehydrogenase (Adh) sequences among these species. The results show that the coding region of Adh is only 82% identical betweenZ. tuberculatus andD. mauritiana, as compared with 90% identical betweenD. tsacasi andD. mauritiana. Furthermore, the mariner gene phylogeny obtained by maximum likelihood and maximum parsimony analyses is discordant with the species phylogeny estimated by using the Adh genes. The only inconsistency in the mariner gene phylogeny is in the placement of theZaprionus mariner sequence, which clusters with mariner fromDrosophila teissieri andDrosophila yakuba in themelanogaster species subgroup. These results strongly suggest horizontal transfer.

Key words

Drosophila Zaprionus Mariner Transposable elements Horizontal gene transfer Alcohol dehydrogenase (Adh) Sequence divergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad PC, Vaury C, Pelisson A, Chaboissier M, Busseau I, Bucheton A (1989) A long interspersed repetitive element—theI factor ofDrosophila teissieri—is able to transpose in differentDrosophila species. Proc Natl Acad Sci USA 86:8887–8891PubMedGoogle Scholar
  2. Ashburner M (1989)Drosophila: a laboratory handbook. Cold Spring Harbor laboratory Press, Cold Spring Harbor NYGoogle Scholar
  3. Beverley SM, Wilson AC (1984) Molecular evolution inDrosophila and the higher diptera II. Time scale for fly evolution. J Mol Evol 21:1–13PubMedGoogle Scholar
  4. Black DM, Jackson MS, Kidwell MG, Dover GA (1987)KP elements repressP-induced hybrid dysgenesis inD. melanogaster. EMBO J 6:4125–4135PubMedGoogle Scholar
  5. Blackman RK, Gelbart WM (1989) The transposable elementhobo ofDrosophila melanogaster. In: Berg DE, Howe M (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 523–529Google Scholar
  6. Bodmer M, Ashburner M (1984) Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species ofDrosophila. Nature 309:425–430PubMedGoogle Scholar
  7. Bucheton A (1990)I transposable elements and I-R hybrid dysgenesis inDrosophila. Trends Genet 6:16–21PubMedGoogle Scholar
  8. Capy P, Chakrani F, Lemeunier F, Hartl DL, David JR (1990) Active mariner transposable elements are widespread in natural populations ofDrosophila simulans. Proc R Soc Lond B 242:57–60Google Scholar
  9. Capy P, Maruyama K, David JR, Hartl DL (1991) Insertion sites of the transposable elementmariner are fixed in the genome ofDrosophila sechellia. J Mol Evol 33:450–456PubMedGoogle Scholar
  10. Charlesworth B, Langley CH (1989) The population genetics ofDrosophila transposable elements. Annu Rev Genet 23:251–287PubMedGoogle Scholar
  11. Cohn VH, Moore GP (1988) Organization and evolution of the alcohol dehydrogenase gene inDrosophila. Mol Biol Evol 5:154–166PubMedGoogle Scholar
  12. Daniels SB, Strausbaugh LD, Armstrong RA (1985) Molecular analysis of P element behavior inDrosophila simulans. Mol Gen Genet 200:258–265PubMedGoogle Scholar
  13. Daniels SB, Chovnick A, Kidwell MG (1989) Hybrid dysgenesis inDrosophila simulans lines transformed with autonomous P elements. Genetics 121:281–291PubMedGoogle Scholar
  14. Daniels SB, Chovnick A, Boussy IA (1990a) Distribution ofhobo transposable elements in the genusDrosophila. Mol Biol Evol 7:589–606PubMedGoogle Scholar
  15. Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (1990b) Evidence for horizontal transmission of theP transposable element betweenDrosophila species. Genetics 124:339–355PubMedGoogle Scholar
  16. Engels WR (1989) P elements inDrosophila melanogaster. In: Berg DE, Howe M (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 437–484Google Scholar
  17. Federoff NV (1989) Maize transposable elements. In: Berg DE, Howe M (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 375–411Google Scholar
  18. Felsenstein J (1988a) PHYLIP: phylogeny inference package. Version 3.2. Department of Genetics SK-50, University of Washington, Seattle WAGoogle Scholar
  19. Felsenstein J (1988b) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565PubMedGoogle Scholar
  20. Finnegan DJ (1989) TheI factor and I-R hybrid dysgenesis inDrosophila melanogaster. In: Berg DE, Howe M (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 503–517Google Scholar
  21. Fischer JA, Maniatis T (1985) Structure and transcription of theDrosophila mulleri alcohol dehydrogenase genes. Nucleic Acids Res 13:6899–6917PubMedGoogle Scholar
  22. Garza D, Medhora M, Koga A, Hartl DL (1991) Introduction of the transposable elementmariner into the germline ofDrosophila melanogaster. Genetics 128:303–310PubMedGoogle Scholar
  23. Grimaldi DA (1990) A phylogenetic, revised classification of genera in the Drosophilidae (Diptera). Bull Am Mus Nat Hist 197:1–139Google Scholar
  24. Hagemann S, Miller WJ, Pinsker W (1990)P-related sequences inDrosophila bifasciata: a molecular clue to the understanding ofP-element evolution in the genusDrosophila. J Mol Evol 31:478–484PubMedGoogle Scholar
  25. Harris LJ, Baillie DL, Rose AM (1988) Sequence identity between an inverted repeat family of transposable elements inDrosophila andCaenorhabditis. Nucleic Acids Res 16:5993–5998Google Scholar
  26. Helms C, Graham MY, Dutchik JE, Olson MV (1985) A new method for purifying lambda DNA from phage lysates. DNA 4:39–49PubMedGoogle Scholar
  27. Henikoff S, Plasterk HA (1988) Related transposons inC. elegans andD. melanogaster. Nucleic Acids Res 16:6234PubMedGoogle Scholar
  28. Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element inDrosophila. Proc Natl Acad Sci USA 83:8684–8688PubMedGoogle Scholar
  29. Jeffs P, Ashburner M (1991) Processed pseudogenes inDrosophila. Proc R Soc London B 244:151–159Google Scholar
  30. Kaplan N, Darden T, Langley CH (1985) Evolution and extinction of transposable elements in Mendelian populations. Genetics 109:459–480PubMedGoogle Scholar
  31. Kreitman M (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster. Nature 304:412–417PubMedGoogle Scholar
  32. Kuner JM, Nakanishi M, Ari Z, Drees B, Gustavson E, Theis J, Kauvar L, Kornberg T, O'farrell PH (1985) Molecular cloning ofengrailed, a gene involved in the development of pattern inDrosophila melanogaster. Cell 42:309–316PubMedGoogle Scholar
  33. Lachaise D, Cariou M, David JR, Lemeunier F, Tsacas L, Ashburner M (1988) Historical biogeography of theDrosophila melanogaster species subgroup. Evol Biol 22:159–227Google Scholar
  34. Lemeunier F, David JR, Tsacas L, Ashburner M (1986) Themelanogaster species group. In: Ashburner M, Carson HL (eds) The genetics and biology ofDrosophila. Academic Press, New York, pp 147–256Google Scholar
  35. Lidholm D-A, Gudmundsson GH, Boman HG (1991) A highly repetitive,mariner-like element in the genome ofHyalophora cecropia. Jour Biol Chem 266:11518–11521Google Scholar
  36. Maruyama K, Hartl DL (1991) Evolution of the transposable elementmariner inDrosophila species. Genetics 128:319–329PubMedGoogle Scholar
  37. Maruyama K, Schoor KD, Hartl DL (1991) Identification of nucleotide substitutions necessary for trans-activation ofmariner transposable elements inDrosophila: analysis of naturally occurring elements. Genetics 128:777–784PubMedGoogle Scholar
  38. Medhora M, Maruyama K, Hartl DL (1991) Molecular and functional analysis of themariner mutator elementMos1 inDrosophila. Genetics 128:311–318PubMedGoogle Scholar
  39. Miller DW, Miller LK (1982) A virus mutant with an insertion of a copia-like transposable element. Nature 299:562–564PubMedGoogle Scholar
  40. Misra S, Rio C (1990) Cytotype control ofDrosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell 40:269–284Google Scholar
  41. Mizrokhi LJ, Mazo AM (1990) Evidence for horizontal transmission of the mobile elementjockey between distantDrosophila species. Proc Natl Acad Sci USA 87:9216–9220PubMedGoogle Scholar
  42. Nitasaka E, Mukai T, Yamazaki T (1987) Repressor ofP elements inDrosophila melanogaster: cytotype determination by a defectiveP element with only open reading frames 0 through 2. Proc Natl Acad Sci USA 84:7605–7608Google Scholar
  43. O'Brochta DA, Handler AM (1988) Mobility ofP elements in drosophilids and nondrosophilids. Proc Natl Acad Sci USA 85:6052–6056Google Scholar
  44. Rio DC (1990) Molecular mechanisms regulatingDrosophila P element transposition. Annu Rev Genet 24:543–578PubMedGoogle Scholar
  45. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  46. Scavarda NJ, Hartl DL (1984) Interspecific DNA transformation inDrosophila. Proc Natl Acad Sci USA 81:7515–7519PubMedGoogle Scholar
  47. Scavarda NJ, Hartl DL (1987) Germline abnormalities inDrosophila simulans transfected with the transposableP element. J Genet 66:1–15Google Scholar
  48. Schaeffer SW, Aquadro CF (1987) Nucleotide sequence of theAdh gene region ofDrosophila pseudoobscura: evolutionary change and evidence for an ancient gene duplication. Genetics 117:61–73PubMedGoogle Scholar
  49. Simmons MJ, Bucholz LM (1985) Transposase titration inDrosophila melanogaster: a model of cytotype in the P-M system of hybrid dysgenesis. Proc Natl Acad Sci USA 82:8119–8123PubMedGoogle Scholar
  50. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedGoogle Scholar
  51. Swofford DL (1989) PAUP: phylogenetic analysis using parsimony, version 3.0. Illinois Natural History Survey, Champaign ILGoogle Scholar
  52. Templeton AR (1983a) Convergent evolution and nonparametric inferences from restriction data and DNA sequences. In: Weir BS (eds) Statistical analysis of DNA sequence data Marcel Dekker, New York, pp 151–179Google Scholar
  53. Templeton AR (1983b) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–244Google Scholar
  54. Throckmorton LH (1975) The phylogeny, ecology, and geography ofDrosophila. In: King RC (eds) Handbook of genetics. Plenum, New York, pp 421–469Google Scholar
  55. Tsacas L, Lachaise D, David JR (1981) Composition and biogeography of the afrotropical drosophilid fauna. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology ofDrosophila. Academic Press, New York, pp 197–259Google Scholar
  56. Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172PubMedGoogle Scholar
  57. Xiong Y, Eickbush TH (1988) Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol 5:675–690PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Kyoko Maruyama
    • 1
  • Daniel L. Hartl
    • 1
  1. 1.Department of GeneticsWashington University School of MedicineSt. LouisUSA

Personalised recommendations