Advertisement

Communications in Mathematical Physics

, Volume 179, Issue 2, pp 295–332 | Cite as

Quantization of Poisson-Lie groups and applications

  • Frederic Bidegain
  • Georges Pinczon
Article

Abstract

LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Harmonic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math.48, no. 3, 568–640 (1947)Google Scholar
  2. 2.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer D.: Deformation theory and quantization, I & II. Ann. Phys.111, 61–110, 111–151 (1978)CrossRefGoogle Scholar
  3. 3.
    Belavin, A. A., Drinfel'd, V.: Solution of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl.16, no. 3, 1–29 (1982)CrossRefGoogle Scholar
  4. 4.
    Bidegain, F.: A candidate to noncompact quantum group. To appear in Letters in Mathematical Physics (1995)Google Scholar
  5. 5.
    Bidegain, F., Pinczon, G.: A star-product approach to noncompact quantum group. Lett. Math. Phys.33, no. 3, 231–240 (1995)CrossRefGoogle Scholar
  6. 6.
    Bonneau, P., Flato, M., Gerstenhaber, M., Pinczon, G.: The hidden group structure of quantum groups: Strong duality, rigidity and preferred deformations. Commun. Math Phys.161, 125–156 (1994)CrossRefGoogle Scholar
  7. 7.
    Chevalley, C.: Theory of Lie groups. Princeton, New Jersey: Princeton University Press, 1946Google Scholar
  8. 8.
    Connes, A., Flato, M., Sternheimer, D.: Closed star-products and cyclic cohomology. Lett. Math. Phys.24, no. 1, 1–12 (1991). See also: Flato, M. Sternheimer, D.: Closedness of starproducts and cohomologies. In: Lie theorie and geometry. Progress in Mathematics, Basel, Boston: Birkhaüser, 1995, pp. 241–260CrossRefGoogle Scholar
  9. 9.
    De Wilde, De M., Lecomte, P.: Existence of star-products and of formal deformations of the Poisson Lie Algebra of arbitrary symplectic manifolds. Lett. Math. Phys.7, no. 6, 487–496 (1983)CrossRefGoogle Scholar
  10. 10a.
    Drinfel'd, V. G.: On constant, quasi-classical solutions of the Yang-Baxter quantum equation. Sov. Math. Dokl.28, no. 3, 667–671 (1983)Google Scholar
  11. 10b.
    Drinfel'd, V. G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Berkeley 1986 (1987) pp. 798–820Google Scholar
  12. 10c.
    Drinfel'd, V. G.: On almost cocomutative Hopf algebras. Leningrad Math. J.1, 321–342 (1990)Google Scholar
  13. 10d.
    Drinfel'd, V. G.: On some, unsolved problems in quantum group theory. Lect. Notes in Math. no.1510, 1–8 (1992)Google Scholar
  14. 11.
    Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, I. Preprint, Harvard University, Cambridge MA02138 (1995)Google Scholar
  15. 12.
    Faddeev, L. D., Reshetikhin, N. Y., Takhtajan, L. A.: Quantization of Lie groups and Lie algebras. Leningrad Math. J.1, 193–226 (1990)Google Scholar
  16. 13.
    Gerstenhaber, M., Schack S. D.: Algebras, bialgebras, quantum groups and algebraic deformations. Contemp. Math.134, 51–92 (1992)Google Scholar
  17. 14.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Memoirs of the American Mathematical Society, no.16, Providence, RI: American Mathematical Soceity, 1955Google Scholar
  18. 15.
    Gutt, S.: An explicit *-product on the cotangent bundle of a Lie group. Lett. Math. Phys.7, no. 3, 249–258 (1983)CrossRefGoogle Scholar
  19. 16.
    Harish-Chandra: Representations of semi-simple groups, IV. Am. J. Math.77, 743–777 (1955)Google Scholar
  20. 17.
    Helgason, S.: Differential geometry and symmetric space. New York: Academic Press, 1962Google Scholar
  21. 18.
    Lesimple, M., Pinczon, G.: Deformations of representations of Lie groups and Lie algebras. J. Math. Phys.34, 4251–4272 (1993)CrossRefGoogle Scholar
  22. 19a.
    Reshetikhin, N. Yu.: Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, I & II. LOMI preprints E-4-87 & E-17-87, Leningrad (1988)Google Scholar
  23. 19b.
    Reshetikhin, N. Yu.: Quantization of Lie bialgebras. Int. Math. Res. Notices7, 143–151 (1992)CrossRefGoogle Scholar
  24. 20.
    Reshetikhin, N. Yu., Semenov-Tian-Shansky, M. A.: QuantumR-matrices and factorization problem, J. Geom. and Phys.5, no. 4, 533–550 (1988)CrossRefGoogle Scholar
  25. 21.
    Schmid, W.: Boundary value problems for group invariant differential equations. In: Elie Cartan et les mathématiciens d'aujourd'hui, Asterisque, Société Mathématique de France, pp. 311–321 (1985)Google Scholar
  26. 22.
    Trèves, F.: Topological vector spaces, distributions and kernels. New York: Academic Press, 1967Google Scholar
  27. 23.
    Turaev, V.: The Yang-Baxter equation and invariants of links. Invent Math.92, 527–553 (1988)CrossRefGoogle Scholar
  28. 24.
    Varadarajan, V. S.: Infinitesimal theory of representations of semi-simple Lie groups. In: Mathematical physics and applied mathematics5, Amsterdam: D. Reidel Publishing 1980, pp. 131–255Google Scholar
  29. 25.
    Warner, G.: Harmonic analysis on semi-simple Lie groups, I. Berlin, Heidelberg, New York: Springer, 1972Google Scholar
  30. 26.
    Weinstein, A.: Deformation quantization. Séminaire Bourbaki, no. 789, 1994Google Scholar
  31. 27.
    Wigner, D.: Private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Frederic Bidegain
    • 1
  • Georges Pinczon
    • 1
  1. 1.Laboratoire d'Algèbre et d'Analyse: Théorie des Représentations, Département de MathématiquesUniversité de BourgogneDijon CedexFrance

Personalised recommendations