Communications in Mathematical Physics

, Volume 175, Issue 2, pp 401–432

The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice

  • Boguslaw Zegarlinski
Article

Abstract

Using a method based on the application of hypercontractivity we prove the strong exponential decay to equilibrium for a stochastic dynamics of unbounded spin system on a lattice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AKR] Albeverio, S., Kondratjev, Y.G., Röckner, M.: Dirichlet Operators and Gibbs Measures. BiBoS Preprint 541, 1992Google Scholar
  2. [BE] Bakry, D., Emery, M.: Diffusions hypercontractives. Sem. de Probabilities XIX, Azema, J., Yor, M. (eds.), Vol. LNm 1123, Berlin, Heidelberg, New York: Springer, 1984, pp. 177–206Google Scholar
  3. [BeH-K] Bellissard, J., Hoegh-Krohn, R.: Compactness and the maximal Gibbs state for random fields on a lattice. Commun. Math. Phys.84, 297–327 (1982)Google Scholar
  4. [Br] Brydges, D.C.: A Short Course on Cluster Expansions. Critical Phenomena, random systems, gauge theories, Osterwalder, K., Stora, R., Les Houches (eds.), vol.XLIII, 1984, pp. 129–183.Google Scholar
  5. [CS] Carlen, E.A., Stroock, D.W.: An application of the Bakry-Emery criterion to infinite dimensional diffusion. Sem. de Probabilities XX, Azema, J., Yor, M. (eds.) LNm 1204, Berlin, Heidelberg, New York: Springer, pp. 341–348Google Scholar
  6. [DaGSi] Davies, E.B., Gross, L., Simon, B.: Hypercontractivity: A bibliographical review. In: Proceedings of the Hoegh-Krohn Memorial ConferenceGoogle Scholar
  7. [DaSi] Davies, E.B., Simon, B.: Ultracontractivity and the Heat Kernel for Schrödinger Operators and Dirichlet Laplacians. J. Func. Anal.59, 335–395 (1984)Google Scholar
  8. [Di] Dimock, J.: A Cluster Expansion for Stochastic Lattice Fields. J. Stat. Phys.58, 1181–1207 (1990)Google Scholar
  9. [GJS] Glimm, J., Jaffe, A., Spencer, T.: The Particle Structure of the weakly-coupled P(ϕ)2 model and other applications of high-temperature expansions. Constructive Field Theory, Velo, G., Wightman, A.S. (eds.), Berlin, Heidelberg, New York: Springer, 1973Google Scholar
  10. [G] Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math.97, 1061–1083 (1976)Google Scholar
  11. [HS] Holley, R., Stroock, D.W.: Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys.46, 1159–1194 (1987)Google Scholar
  12. [LY] Lu, ShengLin, Yau, Horng-Tzer: Spectral Gap and Logarithmic Sobolev Inequality for Kawasaki and Glauber Dynamics. Commun. Math. Phys.156, 399–433 (1993)Google Scholar
  13. [MO] Martinelli, F., Olivieri, E.: Approach to Equilibrium of Glauber Dynamics in the One Phase Region: I. The Attractive case II. The General Case. Commun. Math. Phys.161, 447–486/487–514 (1994)Google Scholar
  14. [MM] Malyshev, W.A., Minlos, R.A.: Gibbsian Random Fields: The Method of Cluster Expansion. Moscow: Nauka, 1985Google Scholar
  15. [R] Rosen, J.: Sobolev Inequalities for Weight Spaces and Supercontractivity. Trans. A.M.S.222, 367–376 (1976)Google Scholar
  16. [Rot] Rothaus, O.S.: Logarithmic Sobelev Inequalities and the Spectrum of Schrödinger Operators. J. Funct. Anal.42, 110–378 (1981)Google Scholar
  17. [Si1] Simon, B.: A remark on Nelson's best hypercontractive estimates. Proc. A.M.S.55, 376–378 (1976)Google Scholar
  18. [Si2] Simon, B.: The:P(ϕ)2 Euclidean (Quantum) Field Theory. Princeton, NJ: Princeton University Press, 1974Google Scholar
  19. [SZ1] Stroock, D.W., Zegarlinski, B.: The Logarithmic Sobolev Inequality for Continuous Spin Systems on a Lattice. J. Funct. Anal.104, 299–326 (1992)Google Scholar
  20. [SZ2] Stroock, D.W., Zegarlinski, B.: The Equivalence of the Logarithmic Sobolev Inequality and the Dobrushin-Shlosman Mixing Condition. Commun. Math. Phys.144, 303–323 (1992)Google Scholar
  21. [SZ3] Stroock, D.W., Zegarlinski, B.: The Logarithmic Sobolev Inequality for Discrete Spin Systems on a Lattice. Commun. Math. Phys.149, 175–193 (1992)Google Scholar
  22. [SZ4] Stroock, D.W., Zegarlinski, B.: On the Ergodic Properties of Glauber Dynamics. PreprintGoogle Scholar
  23. [Z1] Zegarlinski, B.: On log-Sobolev inequalities for infinite lattice systems. Lett. Math. Phys.20, 173–182 (1990)Google Scholar
  24. [Z2] Zegarlinski, B.: Log-Sobolev inequalities for infinite one-dimensional lattice systems. Commun. Math. Phys.133, 147–162 (1990)Google Scholar
  25. [Z3] Zegarlinski, B.: Dobrushin uniqueness theorem and logarithmic Sobolev inequalities. J. Funct. Anal.105, 77–111 (1992)Google Scholar
  26. [Z4] Zegarlinski, B.: Hypercontractive Markov Semigroups. Unpublished lecture notes 1992Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Boguslaw Zegarlinski
    • 1
  1. 1.Mathematics DepartmentImperial CollegeLondonUK

Personalised recommendations