Advertisement

Communications in Mathematical Physics

, Volume 134, Issue 1, pp 79–88 | Cite as

Crystal base for the basic representation of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))\)

  • Kailash C. Misra
  • Tetsuji Miwa
Article

Abstract

We show the existence of the crystal base for the basic representation of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))\) by giving an explicit description in terms of Young diagrams.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: One-dimensional configuration sums in vertex models and affine Lie algebra characters. Lett. Math. Phys.17, 69–77 (1989).Google Scholar
  2. 2.
    Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Paths, Maya diagrams and representations of\(\widehat{\mathfrak{s}\mathfrak{l}}(r,C)\). In: Integrable systems in quantum field theory and statistical mechanics. Adv. Stud. Pure Math.19, 149–191 (1989).Google Scholar
  3. 3.
    Hayashi, T.:Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras.Google Scholar
  4. 4.
    Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS, Kyoto University19, 943–1001 (1983).Google Scholar
  5. 5.
    Kashiwara, M.: Crystalizing theq-analogue of universal enveloping algebras. RIMS, Kyoto University, preprint RIMS-676 (1989)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Kailash C. Misra
    • 1
  • Tetsuji Miwa
    • 2
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  2. 2.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations