Journal of Molecular Evolution

, Volume 20, Issue 1, pp 86–93 | Cite as

A new method for calculating evolutionary substitution rates

  • Cecilia Lanave
  • Giuliano Preparata
  • Cecilia Sacone
  • Gabriella Serio
Article

Summary

In this paper we present a new method for analysing molecular evolution in homologous genes based on a general stationary Markov process. The elaborate statistical analysis necessary to apply the method effectively has been performed using Monte Carlo technqiues. We have applied our method to the silent third position of the codon of the five mitochondrial genes coding for identified proteins of four mammalian species (rat, mouse, cow and man). We found that the method applies satisfactorily to the three former species, while the last appears to be outside the scope of the present approach. The method allows one to calculate the evolutionarily effective silent substitution rate (vs) for mitochondrial genes, which in the species mentioned above is 1.4×10−8 nucleotide substitutions per site per year. We have also determined the divergence time ratios between the couples mousecow/rat-mouse and rat-cow/rat-mouse. In both cases this value is approximately 1.4.

Key words

Silent substitution Molecular evolution Evolution of mitochondrial DNA Stochastic markov chain Monte Carlo simulation 

Abbreviations used

B

cow

H

human

M

mouse

MY

million years

R

rat

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell GB, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464PubMedGoogle Scholar
  2. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. J Mol Biol 156:683–717PubMedGoogle Scholar
  3. Bibb MJ, va Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180PubMedGoogle Scholar
  4. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971PubMedGoogle Scholar
  5. Cantatore P, De Benedetto C, Gadaleta G, Gallerani R, Kroon AM, Holtrop M, Lanave C, Pope G, Quagliariello C, Sacone C, Sbisà E (1982) The nucleotide sequences of several tRNA genes from rat mitochondria: common features and relatedness to homologous species. Nucleic Acids Res 10:3279–3289PubMedGoogle Scholar
  6. Gojobori T, Ishii K, Nei M (1982) Estimation of average number of nucleotide substitutions when the rate of substitution varies with nucleotide. J Mol Evol 18:414–423PubMedGoogle Scholar
  7. Grosskopf R, Feldman H (1981) Analysis of a DNA segment from rat liver mitochondria containing the genes for the cytochrome oxidase subunits I, I and III, ATPase subunit 6 and several tRNA genes. Curr Genet 4:151–158Google Scholar
  8. Grunstein M, Schede P, Kedes L (1976) Sequence analysis and evolution of sea urchin (Lytechnius pictus andStrongylocentrotus purpuratus) histoneH4 messenger RNAs. J Mol Biol 104:351–369PubMedGoogle Scholar
  9. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism, Vol III. Academic Press, New York, pp 21–132Google Scholar
  10. Jukes TH (1980) Silent nucleotide substitutions and the molecular evolutionary clock. Science 210:973–978PubMedGoogle Scholar
  11. Kimura M (1977) Predominance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276PubMedGoogle Scholar
  12. Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458PubMedGoogle Scholar
  13. Kabayashi M, Seki T, Yaginuma K, Koike K (1981) Nucleotide sequences of small ribosomal RNA and adiacent transfer RNA genes in rat mitochondrial DNA. Gene 16:297–307PubMedGoogle Scholar
  14. Koike K, Kobayashi M, Yaginuma K, Taira M, Yoshida E, Imai M (1982) Nucleotide sequence and evolution of the rat mitochondrial cytochrone b gene containing theochre termination codon. Gene 20:177–185PubMedGoogle Scholar
  15. Miyata T, Yasunaga T, Nishida T (1980) Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci USA 77:7328–7332PubMedGoogle Scholar
  16. Pepe G, Holtrop M, Gadaleta G, Kroon AM, Cantatore P, Gallerani R, De Benedetto C, Quagliariello C, Sibisà E, Saccone C (1983) Non-random patterns of nucleotide substitutions and codon strategy in the mammalian mitochondrial genes coding for identified and unidentified reading frames. Biochem Intern 6:553–563Google Scholar
  17. Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolonder R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566PubMedGoogle Scholar
  18. Saccone C, Cantatore P, Gadaleta G, Gallerani R, Lanave C, Pepe G, Kroon AM (1981) The nucleotide sequence of the large ribosomal RNA gene and the adjacent tRNA genes from rat mitochondria. Nucleic Acids Res 9:4139–4148PubMedGoogle Scholar
  19. Saccone C, De Benedetto C, Gadaleta G, Lanave C, Pepe G, Sbisà E, Cantatore P, Gallerani R, Quagliariello C, Holtrop M, Kroon AM (1983) Studies on the evolutionary history of the mammalian mitochondrial genome. In: Nagley P, Linnane AW, Peacock WJ, Pateman JA (eds) Manipulation and Expression of Genes in Eukaryotes. Academic Press, Sydney, pp 325–332Google Scholar
  20. Salser W, Bowen S, Browne D, Eladli F, Fedoroff N, Fry K, Heindell H, Paddock G, Poon R, Wallace B, Whitcome R (1976) Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed Proc 35:23–35PubMedGoogle Scholar
  21. Sekiya T, Kobayashi M, Seki T, Koike K (1980) Nucleotide sequence of a cloned fragment of rat mitochondrial DNA containing the replication origin. Gene 11:53–62PubMedGoogle Scholar
  22. Takahata N, Kimura M (1981) A model of evolutionary base substitutions and its applications with special reference to rapid change of pseudogenes. Genetics 98:641–657PubMedGoogle Scholar
  23. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Cecilia Lanave
    • 1
  • Giuliano Preparata
    • 2
  • Cecilia Sacone
    • 1
  • Gabriella Serio
    • 3
  1. 1.Centro CNR Mitocondri e Metabolismo EnergeticoIstituto di Chimica Biologica, UniversitáBariItaly
  2. 2.Dipartimento di Fisica, UniversitàBariItaly
  3. 3.Diaprtimento di Matematica, UniversitàBariItaly

Personalised recommendations