Journal of Molecular Evolution

, Volume 20, Issue 1, pp 2–15

The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization

  • Charles G. Sibley
  • Jon E. Ahlquist
Article

Summary

The living hominoid primates are Man, the chimpanzees, the Gorilla, the Orangutan, and the gibbons. The cercopithecoids (Old World monkeys) are the sister group of the hominoids. The composition of the Hominoidea is not in dispute, but a consensus has not yet been reached concerning the phylogenetic branching pattern and the dating of divergence nodes. We have compared the single-copy nuclear DNA sequences of the hominoid genera using DNA-DNA hybridization to produce a complete matrix of delta T50H values. The data show that the branching sequence of the lineages, from oldest to most recent, was: Old World monkeys, gibbons, Orangutan, Gorilla, chimpanzees, and Man. The calibration of the delta T50H scale in absolute time needs further refinement, but the ranges of our estimates of the datings of the divergence nodes are: Cercopithecoidea, 27–33 million years ago (MYA); gibbons, 18–22 MYA; Orangutan, 13–16 MYA; Gorilla, 8–10 MYA; and chimpanzees-Man, 6.3–7.7 MYA.

Key words

Hominoid phylogeny DNA-DNA hybridization Divergence dates Human evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J, Rothman ED (1982) Estimation of phylogenetic relationships from DNA restriction patterns and selection of endonuclease cleavage sites. Proc Natl Acad Sci USA 79: 3560–3564PubMedGoogle Scholar
  2. Ahlquist JE, Sheldon FH, Sibley CG (in press) The relationships of the Bornean Bristlehead (Pityriasis gymnocephala) and the Black-collared Thrush (Chlamydochaera jefferyi). J OrnitholGoogle Scholar
  3. Andrews P (1982) Hominoid evolution. Nature 295:185–186PubMedGoogle Scholar
  4. Angerer RC, Davidson EH, Britten RJ (1976) Single-copy DNA and structural gene sequence relationships among four sea urchin species. Chromosoma 56:213–226PubMedGoogle Scholar
  5. Avise JC, Aquadro CF (1982) A comparative summary of genetic distances in the vertebrates. Evol Biol 15:151–185Google Scholar
  6. Avise JC, Lansman RA (1983) Polymorphism of mitochondrial DNA in populations of higher animals. In: Nei M, Kochn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, Massachusetts, pp 147–164Google Scholar
  7. Baba ML, Darga LL, Goodman M (1982) Recent advances in molecular evolution of the primates. In: Chiarelli AB, Corruccini RS (eds) Advanced views in primate biology. Springer-Verlag, Berlin, pp 6–27Google Scholar
  8. Benveniste RE, Todaro GJ (1976) Evolution of type C viral genes: evidence for an Asian origin of man. Nature 261:101–108PubMedGoogle Scholar
  9. Bonner TI, Heinemann R, Todaro GJ (1981) A geographic factor involved in the evolution of the single copy DNA sequences of primates. In: Scudder GGE, Reveal JL (eds) Evolution today, Proceedings of the 2nd International Congress of Systematic and Evolutionary Biology. Hunt Institute of Botanic Documentation, Pittsburgh, pp 293–300Google Scholar
  10. Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540PubMedGoogle Scholar
  11. Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Methods Enzymol 29:363–418PubMedGoogle Scholar
  12. Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, Massachusetts, pp 62–88Google Scholar
  13. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239PubMedGoogle Scholar
  14. Bruce EJ, Ayala FJ (1979) Phylogenetic relationships between man and the apes: electrophoretic evidence. Evolution 33:1040–1056Google Scholar
  15. Chan H-C, Ruyechan WT, Wetmur JG (1976) In vitro iodination of low complexity nucleic acids without chain scission. Biochemistry 15:5487–5490PubMedGoogle Scholar
  16. Ciochon RL, Corruccini RS (1982) Miocene hominoids and new interpretations of ape and human ancestry. In: Chiarelli AB, Corruccini RS (eds) Advanced views in primate biology. Springer-Verlag, Berlin, pp 149–159Google Scholar
  17. Commorford SL (1971) Iodination of nucleic acidsin vitro. Biochemistry 10:1993–2000PubMedGoogle Scholar
  18. Delson E, Eldredge N, Tattersall I (1977) Reconstruction of hominid phylogeny: a testable framework based on cladistic analysis. J Hum Evol 6:263–278Google Scholar
  19. Dene HT, Goodman M, Prychodko W (1976) Immunodiffusion evidence on the phylogeny of the primates. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 171–196Google Scholar
  20. Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny fromMicrocebus murinus (prosimian) to man. Hum Genet 48:251–314PubMedGoogle Scholar
  21. Dutrillaux B (1980) Chromosomal evolution of the great apes and man. J Reprod Fertil [Suppl] 28:105–111Google Scholar
  22. Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668Google Scholar
  23. Farris JS (1981) Distance data in phylogenetic analysis. In: Funk VA, Brooks DR (eds) Advances in cladistics. New York Botanical Garden, New York, pp 3–23Google Scholar
  24. Ferris SD, Wilson AC, Brown WM (1981) Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci USA 78:2432–2436PubMedGoogle Scholar
  25. Fitch WM (1976) Molecular evolutionary clocks. In: Ayala FJ (ed) Molecular evolution. Sinauer Associates, Sunderland, Massachusetts, pp 160–178Google Scholar
  26. Friday AE (1981) Hominoid evolution: the nature of biochemical evidence. Symp Soc Study Hum Biol 21:1–23Google Scholar
  27. Goodman M (1975) Protein sequence and immunological specificity: their role in phylogenetic studies of primates. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates. Plenum Press, New York, pp 219–248Google Scholar
  28. Goodman M (1976) Toward a genealogical description of the primates. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 321–353Google Scholar
  29. Goodman M, Olson CB, Beeber JE, Czelusniak J (1982a) New perspectives in the molecular biological analysis of mammalian phylogeny. Acta Zool Fennica 169:19–35Google Scholar
  30. Goodman M, Weiss ML, Czelusniak J (1982b) Molecular evolution above the species level: branching pattern, rates, and mechanisms. Syst Zool 31:376–399Google Scholar
  31. Goodman M, Braunitzer G, Stangl A, Shrank B (1983) Evidence on human origins from haemoglobins of African apes. Nature 303:546–548PubMedGoogle Scholar
  32. Hoffstetter R (1982) Les primates Simiiformes (=Anthropoidea) (comprehension, phylogenie, histoire biogeographique). Ann Paleontol 68:241–290Google Scholar
  33. Honacki JH, Kinman KE, Koeppl JW (eds) (1982) Mammal species of the world. Association of Systematic Collections, Museum of Natural History, University of Kansas, Lawrence, KansasGoogle Scholar
  34. Hoyer BH, van de Velde NW, Goodman M, Roberts RB (1972) Examination of hominoid evolution by DNA sequence homology. J Hum Evol 1:645–649Google Scholar
  35. Jacobs LL, Pilbeam D (1980) Of mice and men: fossil-based divergence dates and molecular “clocks”. J. Hum Evol 9:551–555Google Scholar
  36. Johanson DC, White TD (1979) A systematic assessment of early African hominoids. Science 203:321–330PubMedGoogle Scholar
  37. Jones KW (1976) Comparative aspects of DNA in higher primates. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 357–368Google Scholar
  38. Kluge AG (1983) Cladistics and the classification of the great apes. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum Press, New York, pp 151–177Google Scholar
  39. Kohne DE (1970) Evolution of higher-organism DNA. Q Rev Biophys 33:327–375Google Scholar
  40. Kohne DE, Britten RJ (1971) Hydroxyapatite techniques for nucleic acid reassociation. Procedures Nucleic Acid Res 2: 500–512Google Scholar
  41. Kohne DE, Chiscon JA, Hoyer BH (1972) Evolution of primate DNA sequences. J Hum Evol 1:627–644Google Scholar
  42. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:585–596PubMedGoogle Scholar
  43. Miller DA (1977) Evolution of primate chromosomes. Science 198:1116–1124PubMedGoogle Scholar
  44. Oxnard CE (1981) The place of man among the primates: anatomical, molecular and morphometric evidence. Homo 32:149–176Google Scholar
  45. Patterson B, Behrensmeyer AK, Sill WD (1970) Geology and fauna of new Pliocene locality in north-western Kenya. Nature 226:918–921PubMedGoogle Scholar
  46. Pilbeam D (1982) New hominoid skull material from the Miocene of Pakistan. Nature 295:232–234PubMedGoogle Scholar
  47. Pilbeam D (1983) Hominoid evolution and hominid origins. In: Chagas C (ed) Recent advances in the evolution of the primates. Pontificae Academiae Scientiarum Scripta Varia 50, Vatican, Rome, pp 43–61Google Scholar
  48. Prensky W (1976) The radioiodination of RNA and DNA to high specific activities. Methods Cell Biol 13:121–152PubMedGoogle Scholar
  49. Romero-Herrera AE, Lehmann H, Joysey KA, Friday AE (1978) On the evolution of myoglobin. Philos Trans R Soc Lond 283:61–163Google Scholar
  50. Sarich VM, Cronin JE (1976) Molecular systematics of the primates. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 141–170Google Scholar
  51. Sarich VM, Cronin JE (1977) Generation-length and rates of hominoid molecular evolution. Nature 269:354–355Google Scholar
  52. Sarich VM, Wilson AC (1967a) Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148PubMedGoogle Scholar
  53. Sarich VM, Wilson AC (1967b) Immunological time scale for hominid evolution. Science 158:1200–1204PubMedGoogle Scholar
  54. Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147PubMedGoogle Scholar
  55. Seuánez HN (1982) Chromosome banding and primate phylogeny. In: Chiarelli AB, Corruccini RS (eds) Advanced views in primate biology. Springer-Verlag, Berlin, pp 224–235Google Scholar
  56. Shields GF, Straus NA (1975) DNA-DNA hybridization studies of birds. Evolution 29:159–166Google Scholar
  57. Sibley CG, Ahlquist JE (1980) The relationships of the “primitive insect eaters” (Aves: Passeriformes) as indicated by DNA-DNA hybridization. In: Nohring R (ed) Proceedings of the 17th International Ornithological Congress. Deutsche Ornith Gesellsch, Berlin, pp 1215–1220Google Scholar
  58. Sibley CG, Ahlquist JE (1981a) The phylogeny and relationships of the ratite birds as indicated by DNA-DNA hybridization. In: Scudder GGE, Reveal JL (eds) Proceedings of the 2nd International Congress of Systematic and Evolutionary Biology. Hunt Institute of Botanic Documentation, Pittsburgh, pp 301–335Google Scholar
  59. Sibley CG, Ahlquist JE (1981b) The relationships of the accentors (Prunella) as indicated by DNA-DNA hybridization. J Ornithol 122:369–378Google Scholar
  60. Sibley CG, Ahlquist JE (1981c) The relationships of the wagtails and pipits (Motacillidae) as indicated by DNA-DNA hybridization. L'Oiseau et RFO 51:189–199Google Scholar
  61. Sibley CG, Ahlquist JE (1982a) The relationships of the Hawaiian honeycreepers (Drepaninini) as indicated by DNA-DNA hybridization. Auk 99:130–140Google Scholar
  62. Sibley CG, Ahlquist JE (1982b) The relationships of the Wrentit (Chamaea fasciata) as indicated by DNA-DNA hybridization. Condor 84:40–44Google Scholar
  63. Sibley CG, Ahlquist JE (1982c) The relationships of the vireos (Vireoninae) as indicated by DNA-DNA hybridization. Wilson Bull 94:114–128Google Scholar
  64. Sibley CG, Ahlquist JE (1982d) The relationships of the Yellow-breasted Chat (Icteria virens), and the alleged “slow-down” in the rate of macromolecular evolution in birds. Postilla 187: 1–19Google Scholar
  65. Sibley CG, Ahlquist JE (1982e) The relationships of the Australo-Papuan scrub-robinsDrymodes as indicated by DNA-DNA hybridization. Emu 82:101–105Google Scholar
  66. Sibley CG, Ahlquist JE (1982f) The relationships of the Australo-Papuan sittellasDaphoenositta as indicated by DNA-DNA hybridization. Emu 82:173–176Google Scholar
  67. Sibley CG, Ahlquist JE (1982g) The relationships of the Australasian whistlersPachycephala as indicated by DNA-DNA hybridization. Emu 82:199–202Google Scholar
  68. Sibley CG, Ahlquist JE (1982h) The relationships of the Australo-Papuan fairy-wrensMalurus as indicated by DNA-DNA hybridization. Emu 82:251–255Google Scholar
  69. Sibley CG, Ahlquist JE (1982i) The relationships of the swallows (Hirundinidae). J Yamashina Inst Ornithol 14:122–130Google Scholar
  70. Sibley CG, Ahlquist JE (1983) Phylogeny and classification of birds based on the data of DNA-DNA hybridization. In: Johnston RF (ed) Current Ornithology. Vol. 1. Plenum Press, New York, pp 245–292Google Scholar
  71. Sibley CG, Ahlquist JE (in press a) The phylogeny and classification of the passerine birds, based on comparisons of the genetic material, DNA. In: Ilyichev VD (ed) Proceedings of the 18th International Ornithological Congress. Nauka, MoscowGoogle Scholar
  72. Sibley CG, Ahlquist JE (in press b) The phylogeny and classification of the New World suboscine passerine birds (Passeriformes: Oligomyodi: Tyrannides). In: Buckley P, Foster M, Morton E, Ridgely, R, Smith N (eds) Neotropical ornithology. American Ornithologists' Union Monographs, Washington, DCGoogle Scholar
  73. Sibley CG, Ahlquist JE (in press c) The relationships of the starlings (Sturnidae: Sturnini) and the mockingbirds (Sturnidae: Mimini). AukGoogle Scholar
  74. Sibley CG, Ahlquist JE (in press d) The relationships of the Papuan genusPeltops. EmuGoogle Scholar
  75. Sibley CG, Ahlquist JE (in press e) The phylogeny and classification of the Australo-Papuan passerine birds. EmuGoogle Scholar
  76. Sibley CG, Williams GR, Ahlquist JE (1982) The relationships of the New Zealand wrens (Acanthisittidae) as indicated by DNA-DNA hybridization. Notornis 29:113–130Google Scholar
  77. Sibley CG, Lanyon SM, Ahlquist JE (in press a) The relationships of the Sharpbill (Oxyruncus cristatus). CondorGoogle Scholar
  78. Sibley CG, Schodde R, Ahlquist JE (in press b) The relationships of the Australo-Papuan treecreepers Climacteridae as indicated by DNA-DNA hybridization. EmuGoogle Scholar
  79. Simons EL (1964) The early ancestors of man. Sci Am 211:50PubMedGoogle Scholar
  80. Simons EL (1976) The fossil record of primate phylogeny. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 35–62Google Scholar
  81. Templeton AR (1983) Phylogenetic inference from restriction endonuclease site maps with particular reference to the evolution of humans and apes. Evolution 37:221–244Google Scholar
  82. Thorpe JP (1982) The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. Annu Rev Ecol Systemat 13:139–168Google Scholar
  83. Walker A (1976) Splitting times among hominoids deduced from the fossil record. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 63–77Google Scholar
  84. White TD, Johanson DC, Kimbel WH (1981)Australopithecus africanus: its phyletic position reconsidered. S Afr J Sci 77: 445–470Google Scholar
  85. Wilson AC, Sarich VM (1969) A molecular time scale for human evolution. Proc Natl Acad Sci USA 63:1088–1093PubMedGoogle Scholar
  86. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639PubMedGoogle Scholar
  87. Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Charles G. Sibley
    • 1
  • Jon E. Ahlquist
    • 1
  1. 1.Department of Biology and Peabody Museum of Natural HistoryYale UniversityNew HavenUSA

Personalised recommendations