Advertisement

Communications in Mathematical Physics

, Volume 172, Issue 3, pp 571–622 | Cite as

OnE10 and the DDF construction

  • R. W. Gebert
  • H. Nicolai
Article

Abstract

An attempt is made to understand the root spaces of Kac Moody algebras of hyperbolic type, and in particularE10, in terms of a DDF construction appropriate to a subcritical compactified bosonic string. While the level-one root spaces can be completely characterized in terms of transversal DDF states (the level-zero elements just span the affine subalgebra), longitudinal DDF states are shown to appear beyond level one. In contrast to previous treatments of such algebras, we find it necessary to make use of a rational extension of the self-dual root lattice as an auxiliary device, and to admit non-summable operators (in the sense of the vertex algebra formalism). We demonstrate the utility of the method by completely analyzing a non-trivial level-two root space, obtaining an explicit and comparatively simple representation for it. We also emphasize the occurrence of several Virasoro algebras, whose interrelation is expected to be crucial for a better understanding of the complete structure of the Kac Moody algebra.

Subject Classifications

17B67 17B81 81R10 83E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardakçi, K., Halpern, M. B.: New dual quark models. Phys. Rev.D3, 2493–2506 (1971)Google Scholar
  2. 2.
    Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys.B241, 333–380 (1984)Google Scholar
  3. 3.
    Borcherds, R. E.: Generalized Kac-Moody algebras. J. Algebra115, 501–512 (1988)Google Scholar
  4. 4.
    Borcherds, R. E.: The monster Lie algebra. Adv. Math.83, 30–47 (1990)Google Scholar
  5. 5.
    Borcherds, R. E.: Monstrous Lie superalgebras. Invent. Math.109, 405–444 (1992)Google Scholar
  6. 6.
    Borcherds, R. E.: Vertex algebras, Kac-Moody algebras, and the monster. Proc. Nat. Acad. Soc. USA83, 3068–3071 (1986)Google Scholar
  7. 7.
    Borcherds, R. E., Conway, J. H., Queen, L., Sloane, N. J. A.: A monster Lie algebra? Adv. Math.53, 75–79 (1984)Google Scholar
  8. 8.
    Brower, R. C.: Spectrum-generating algebra and no-ghost theorem for the dual model. Phys. Rev.D6, 1655–1662 (1972)Google Scholar
  9. 9.
    Carter, R.: Simple groups of Lie type. New York: J. Wiley and Sons, 1972Google Scholar
  10. 10.
    Conway, J. H.: The automorphism group of the 26-dimensional even unimodular Lorentzian lattice. J. Algebra80, 159–163 (1983)Google Scholar
  11. 11.
    Del Giudice, E., Di Vecchia, P., Fubini, S.: General properties of the dual resonance model. Ann. Phys.70, 378–398 (1972)Google Scholar
  12. 12.
    Feingold, A. J., Frenkel, I. B.: A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann.263, 87–144 (1983)Google Scholar
  13. 13.
    Feingold, A. J., Frenkel, I. B., Ries, J. F. X.: Representations of hyperbolic Kac-Moody algebras. J. Algebra156, 433–453 (1993)Google Scholar
  14. 14.
    Frenkel, I. B.: Representations of Kac-Moody algebras and dual resonance models. In: Applications of Group Theory in Theoretical Physics, Providence, RI: American Mathematical Society, Lect. Appl. Math. Vol. 21, 1985, pp. 325–353Google Scholar
  15. 15.
    Frenkel, I. B., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs of the American Mathematical Society104, 594 (1993)Google Scholar
  16. 16.
    Frenkel, I. B., Kac, V. G.: Basic representations of affine Lie algebras and dual models. Invent. Math.62, 23–66 (1980)Google Scholar
  17. 17.
    Frenkel, I. B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics Vol.134, San Diego, CA: Academic Press, 1988Google Scholar
  18. 18.
    Frenkel, I. B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J.66, 123–168 (1992)Google Scholar
  19. 19.
    Gebert, R. W.: Introduction to vertex algebras, Borcherds algebras, and the monster Lie algebra. Int. J. Mod. Phys.A8, 5441–5503 (1993)Google Scholar
  20. 20.
    Ginsparg, P.: Course 1 — Applied conformal field theory. In: E. Brézin, J. Zinn-Justin (eds.), Les Houches SessionXLIX, 1988, Fields, Strings and Critical Phenomena, Amsterdam: Elsevier, 1989, pp. 1–168Google Scholar
  21. 21.
    Goddard, P.: Meromorphic conformal field theory. In: V. G. Kac (ed.), Infinite Dimensional Lie Algebras and Groups-Proceedings of the Conference held at CIRM, Luminy, July 4–8, 1988, Advanced Series in Mathematical Physics Vol.7, Singapore: World Scientific, 1989, pp. 556–587Google Scholar
  22. 22.
    Goddard, P.: Vertex operators and algebras. In: G. Furlan, R. Jengo, J. C. Pati, D. W. Sciama, Q. Shafi (eds.), The ICTP Series in Theoretical Physics — Vol.2, Superstrings, Supergravity and Unified Theories, Singapore: World Scientific, 1986, pp. 255–291Google Scholar
  23. 23.
    Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset space models. Phys. Lett.152B, 88–92 (1985)Google Scholar
  24. 24.
    Goddard, P., Olive, D.: Algebras, lattices and strings. In: J. Lepowsky, S. Mandelstam, I. M. Singer (eds.), Vertex Operators in Mathematics and Physics — Proceedings of a Conference November 10–17, 1983, Publications of the Mathematical Sciences Research Institute #3, New York: Springer, 1985, pp. 51–96Google Scholar
  25. 25.
    Goddard, P., Olive, D.: Kac-Moody and Virasoro algebras in relation to quantum physics. Int. J. Mod. Phys.A1, 303–414 (1986)Google Scholar
  26. 26.
    Goddard, P., Thorne, C. B.: Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model. Phys. Lett.40B, 235–238 (1972)Google Scholar
  27. 27.
    Green, M. B., Schwarz, J. H., Witten, E.: Superstring Theory, Vols. 1&2. Cambridge: Cambridge University Press, 1988Google Scholar
  28. 28.
    Halpern, M. B.: Quantum “solitons” which areSU(N) fermions. Phys. Rev.D12, 1684–1699 (1975)Google Scholar
  29. 29.
    Kac, V. G.: Infinite dimensional Lie algebras. Third edition, Cambridge: Cambridge University Press, 1990Google Scholar
  30. 30.
    Kac, V. G., Moody, R. V., Wakimoto, M.: OnE 10. In: K. Bleuler, M. Werner (eds.), Differential geometrical methods in theoretical physics. Proceedings, NATO advanced research workshop, 16th international conference, Como, Amsterdam: Kluwer, 1988, pp. 109–128Google Scholar
  31. 31.
    Kass, S., Moody, R. V., Patera, J., Slansky, R.: Affine Lie Algebras, Weight Multiplicities, and Branching Rules, Vols. 1&2. Berkeley, CA: University of California Press, 1990Google Scholar
  32. 32.
    Lerche, W., Schellekens, A. N., Warner, N. P.: Lattices and strings. Phys. Rep.177, 1–140 (1989)Google Scholar
  33. 33.
    Lian, B. H., Zuckerman, G. J.: Some Classical and Quantum Algebras. Preprint HEP-TH/9404010Google Scholar
  34. 34.
    Marotta, V., Sciarrino, A.: Vertex operator realization and representations of hyperbolic Kac-Moody algebra\(\hat A_1^{(1)}\). J. Phys. A.: Math. and Gen.26, 1161–1177 (1993)Google Scholar
  35. 35.
    Marotta, V., Sciarrino, A.: Structure of Lorentzian Algebras and Conformal Field Theory. Preprint HEP-TH/9405192Google Scholar
  36. 36.
    Moody, R. V.: Root systems of hyperbolic type. Adv. Math.33, 144–160 (1979)Google Scholar
  37. 37.
    Moore, G.: Finite in all directions. Preprint HEP-TH/9305139, YCTP-P12-93, New Haven, CT: Yale University, 1993Google Scholar
  38. 38.
    Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989)Google Scholar
  39. 39.
    Nergiz, S., Saçlioĝlu, C.: On-shell three-string amplitudes and the structure constants of the monster Lie algebra. Int. J. Mod. Phys.A5, 2647–2665 (1990)Google Scholar
  40. 40.
    Saçlioĝlu, C.: Dynkin diagrams for hyperbolic Kac-Moody algebras. J. Phys. A: Math. and Gen.22, 3753–3769 (1989)Google Scholar
  41. 41.
    Scherk, J.: An introduction to the theory of dual models and strings. Rev. Mod. Phys.47, 123–164 (1975)Google Scholar
  42. 42.
    Serre, J.: A Course in Arithmetics. New York: Springer, 1973Google Scholar
  43. 43.
    Zhu, Y.: Vertex Operator Algebras, Elliptic Functions, and Modular Forms. PhD thesis, Yale University, New Haven, CT, 1990Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. W. Gebert
    • 1
  • H. Nicolai
    • 1
  1. 1.IInd Institute for Theoretical PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations